Prove a Continuous Function Bounded
$begingroup$
Let $f:mathbb{R}rightarrowmathbb{R}$ be a continuous function which satisfies
$$sup_{x,yinmathbb{R}}|f(x+y)-f(x)-f(y)|<infty$$
If we have $displaystyle{lim_{nrightarrowinfty,ninmathbb{N}}frac{f(n)}{n}=2014}$, prove $displaystyle{sup_{xinmathbb{R}}|f(x)-2014x|}<infty$.
(Problem 1 in S.-T. Yau College Student Mathematics Contests 2014, Analysis and Differential Equations Individual)
Firstly we can replace $2014$ by $0$ so we actually need to prove $f(x)$ to be bounded over $mathbb{R}$. And it's not difficult to prove that $displaystyle{lim_{xrightarrow+infty}frac{f(x)}{x}=0}$, but idk how to go on with it. Thanks for your help!!!
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{R}rightarrowmathbb{R}$ be a continuous function which satisfies
$$sup_{x,yinmathbb{R}}|f(x+y)-f(x)-f(y)|<infty$$
If we have $displaystyle{lim_{nrightarrowinfty,ninmathbb{N}}frac{f(n)}{n}=2014}$, prove $displaystyle{sup_{xinmathbb{R}}|f(x)-2014x|}<infty$.
(Problem 1 in S.-T. Yau College Student Mathematics Contests 2014, Analysis and Differential Equations Individual)
Firstly we can replace $2014$ by $0$ so we actually need to prove $f(x)$ to be bounded over $mathbb{R}$. And it's not difficult to prove that $displaystyle{lim_{xrightarrow+infty}frac{f(x)}{x}=0}$, but idk how to go on with it. Thanks for your help!!!
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb{R}rightarrowmathbb{R}$ be a continuous function which satisfies
$$sup_{x,yinmathbb{R}}|f(x+y)-f(x)-f(y)|<infty$$
If we have $displaystyle{lim_{nrightarrowinfty,ninmathbb{N}}frac{f(n)}{n}=2014}$, prove $displaystyle{sup_{xinmathbb{R}}|f(x)-2014x|}<infty$.
(Problem 1 in S.-T. Yau College Student Mathematics Contests 2014, Analysis and Differential Equations Individual)
Firstly we can replace $2014$ by $0$ so we actually need to prove $f(x)$ to be bounded over $mathbb{R}$. And it's not difficult to prove that $displaystyle{lim_{xrightarrow+infty}frac{f(x)}{x}=0}$, but idk how to go on with it. Thanks for your help!!!
real-analysis
$endgroup$
Let $f:mathbb{R}rightarrowmathbb{R}$ be a continuous function which satisfies
$$sup_{x,yinmathbb{R}}|f(x+y)-f(x)-f(y)|<infty$$
If we have $displaystyle{lim_{nrightarrowinfty,ninmathbb{N}}frac{f(n)}{n}=2014}$, prove $displaystyle{sup_{xinmathbb{R}}|f(x)-2014x|}<infty$.
(Problem 1 in S.-T. Yau College Student Mathematics Contests 2014, Analysis and Differential Equations Individual)
Firstly we can replace $2014$ by $0$ so we actually need to prove $f(x)$ to be bounded over $mathbb{R}$. And it's not difficult to prove that $displaystyle{lim_{xrightarrow+infty}frac{f(x)}{x}=0}$, but idk how to go on with it. Thanks for your help!!!
real-analysis
real-analysis
asked Jan 10 '17 at 8:19


AbnerYeAbnerYe
468211
468211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
WLOG, consider a continuous function $g:mathbb{R}tomathbb{R}$ such that
$g(0)=0$,
$g([0,+infty)) supset [0,+infty)$,
$|g(x+y)-g(x)-g(y)| le 1$ for any $x,yinmathbb{R}$.
Since $g$ is continuous, we can define
$$ a_k := inf { x>0 : g(x)=2^k }, quad k=1,2,cdots. $$
It is clear that $a_k$ increases to $+infty$ as $ktoinfty$. Also, we will find that
$$ g(a_k)/a_k ge 1/a_1 >0, $$
which provides a contradiction.
Note that $a_1 in (0,+infty)$ and $g(a_1)=2$. If $a>0$ and $g(a)=n>0$, then
$$ |g(a+a_1)-g(a)-g(a_1)| le 1 implies g(a+a_1) ge n+1, $$
and
$$ |g(2a+a_1)-g(a)-g(a+a_1)| le 1 implies g(2a+a_1) ge 2n. $$
Therefore, we have $a_{k+1} le 2 a_k + a_1$, and thus
$$ a_{k+1}+a_1 le 2(a_k+a_1) implies a_k+a_1 le 2^{k-1}(a_1+a_1). $$
It follows that $a_k le 2^k a_1$ and the proof is complete.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2091487%2fprove-a-continuous-function-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
WLOG, consider a continuous function $g:mathbb{R}tomathbb{R}$ such that
$g(0)=0$,
$g([0,+infty)) supset [0,+infty)$,
$|g(x+y)-g(x)-g(y)| le 1$ for any $x,yinmathbb{R}$.
Since $g$ is continuous, we can define
$$ a_k := inf { x>0 : g(x)=2^k }, quad k=1,2,cdots. $$
It is clear that $a_k$ increases to $+infty$ as $ktoinfty$. Also, we will find that
$$ g(a_k)/a_k ge 1/a_1 >0, $$
which provides a contradiction.
Note that $a_1 in (0,+infty)$ and $g(a_1)=2$. If $a>0$ and $g(a)=n>0$, then
$$ |g(a+a_1)-g(a)-g(a_1)| le 1 implies g(a+a_1) ge n+1, $$
and
$$ |g(2a+a_1)-g(a)-g(a+a_1)| le 1 implies g(2a+a_1) ge 2n. $$
Therefore, we have $a_{k+1} le 2 a_k + a_1$, and thus
$$ a_{k+1}+a_1 le 2(a_k+a_1) implies a_k+a_1 le 2^{k-1}(a_1+a_1). $$
It follows that $a_k le 2^k a_1$ and the proof is complete.
$endgroup$
add a comment |
$begingroup$
WLOG, consider a continuous function $g:mathbb{R}tomathbb{R}$ such that
$g(0)=0$,
$g([0,+infty)) supset [0,+infty)$,
$|g(x+y)-g(x)-g(y)| le 1$ for any $x,yinmathbb{R}$.
Since $g$ is continuous, we can define
$$ a_k := inf { x>0 : g(x)=2^k }, quad k=1,2,cdots. $$
It is clear that $a_k$ increases to $+infty$ as $ktoinfty$. Also, we will find that
$$ g(a_k)/a_k ge 1/a_1 >0, $$
which provides a contradiction.
Note that $a_1 in (0,+infty)$ and $g(a_1)=2$. If $a>0$ and $g(a)=n>0$, then
$$ |g(a+a_1)-g(a)-g(a_1)| le 1 implies g(a+a_1) ge n+1, $$
and
$$ |g(2a+a_1)-g(a)-g(a+a_1)| le 1 implies g(2a+a_1) ge 2n. $$
Therefore, we have $a_{k+1} le 2 a_k + a_1$, and thus
$$ a_{k+1}+a_1 le 2(a_k+a_1) implies a_k+a_1 le 2^{k-1}(a_1+a_1). $$
It follows that $a_k le 2^k a_1$ and the proof is complete.
$endgroup$
add a comment |
$begingroup$
WLOG, consider a continuous function $g:mathbb{R}tomathbb{R}$ such that
$g(0)=0$,
$g([0,+infty)) supset [0,+infty)$,
$|g(x+y)-g(x)-g(y)| le 1$ for any $x,yinmathbb{R}$.
Since $g$ is continuous, we can define
$$ a_k := inf { x>0 : g(x)=2^k }, quad k=1,2,cdots. $$
It is clear that $a_k$ increases to $+infty$ as $ktoinfty$. Also, we will find that
$$ g(a_k)/a_k ge 1/a_1 >0, $$
which provides a contradiction.
Note that $a_1 in (0,+infty)$ and $g(a_1)=2$. If $a>0$ and $g(a)=n>0$, then
$$ |g(a+a_1)-g(a)-g(a_1)| le 1 implies g(a+a_1) ge n+1, $$
and
$$ |g(2a+a_1)-g(a)-g(a+a_1)| le 1 implies g(2a+a_1) ge 2n. $$
Therefore, we have $a_{k+1} le 2 a_k + a_1$, and thus
$$ a_{k+1}+a_1 le 2(a_k+a_1) implies a_k+a_1 le 2^{k-1}(a_1+a_1). $$
It follows that $a_k le 2^k a_1$ and the proof is complete.
$endgroup$
WLOG, consider a continuous function $g:mathbb{R}tomathbb{R}$ such that
$g(0)=0$,
$g([0,+infty)) supset [0,+infty)$,
$|g(x+y)-g(x)-g(y)| le 1$ for any $x,yinmathbb{R}$.
Since $g$ is continuous, we can define
$$ a_k := inf { x>0 : g(x)=2^k }, quad k=1,2,cdots. $$
It is clear that $a_k$ increases to $+infty$ as $ktoinfty$. Also, we will find that
$$ g(a_k)/a_k ge 1/a_1 >0, $$
which provides a contradiction.
Note that $a_1 in (0,+infty)$ and $g(a_1)=2$. If $a>0$ and $g(a)=n>0$, then
$$ |g(a+a_1)-g(a)-g(a_1)| le 1 implies g(a+a_1) ge n+1, $$
and
$$ |g(2a+a_1)-g(a)-g(a+a_1)| le 1 implies g(2a+a_1) ge 2n. $$
Therefore, we have $a_{k+1} le 2 a_k + a_1$, and thus
$$ a_{k+1}+a_1 le 2(a_k+a_1) implies a_k+a_1 le 2^{k-1}(a_1+a_1). $$
It follows that $a_k le 2^k a_1$ and the proof is complete.
answered Jan 31 at 13:10


kelltykellty
9417
9417
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2091487%2fprove-a-continuous-function-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown