Prove that $(a_n) preccurlyeq_1 (b_n) iff (a_n) preccurlyeq_2 (b_n)$ or $(a_n) approx (b_n)$ for Cauchy...












0












$begingroup$



  1. Does my attempt look fine or contain logical flaws/gaps?



  2. To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.



    Any suggestion is greatly appreciated. Thank you for your help!






Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:



$$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$




Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$






My attempt:





  1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


$langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.



$langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.





  1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that



$(1) space forall N, exists n>N: d_n > 0$.



$(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.



We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$



Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.



To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    1. Does my attempt look fine or contain logical flaws/gaps?



    2. To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.



      Any suggestion is greatly appreciated. Thank you for your help!






    Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:



    $$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$




    Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$






    My attempt:





    1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


    $langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.



    $langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.





    1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


    Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that



    $(1) space forall N, exists n>N: d_n > 0$.



    $(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.



    We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$



    Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.



    To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      1. Does my attempt look fine or contain logical flaws/gaps?



      2. To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.



        Any suggestion is greatly appreciated. Thank you for your help!






      Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:



      $$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$




      Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$






      My attempt:





      1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


      $langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.



      $langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.





      1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


      Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that



      $(1) space forall N, exists n>N: d_n > 0$.



      $(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.



      We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$



      Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.



      To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.










      share|cite|improve this question











      $endgroup$





      1. Does my attempt look fine or contain logical flaws/gaps?



      2. To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.



        Any suggestion is greatly appreciated. Thank you for your help!






      Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:



      $$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$




      Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$






      My attempt:





      1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


      $langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.



      $langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.





      1. $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$


      Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that



      $(1) space forall N, exists n>N: d_n > 0$.



      $(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.



      We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$



      Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.



      To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.







      real-analysis proof-verification alternative-proof cauchy-sequences






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 31 at 11:08







      Le Anh Dung

















      asked Jan 31 at 10:57









      Le Anh DungLe Anh Dung

      1,4511621




      1,4511621






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094760%2fprove-that-a-n-preccurlyeq-1-b-n-iff-a-n-preccurlyeq-2-b-n-or-a-n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094760%2fprove-that-a-n-preccurlyeq-1-b-n-iff-a-n-preccurlyeq-2-b-n-or-a-n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith