Prove that $(a_n) preccurlyeq_1 (b_n) iff (a_n) preccurlyeq_2 (b_n)$ or $(a_n) approx (b_n)$ for Cauchy...
$begingroup$
Does my attempt look fine or contain logical flaws/gaps?
To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.
Any suggestion is greatly appreciated. Thank you for your help!
Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:
$$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$
Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
My attempt:
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
$langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that
$(1) space forall N, exists n>N: d_n > 0$.
$(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.
We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$
Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.
To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.
real-analysis proof-verification alternative-proof cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Does my attempt look fine or contain logical flaws/gaps?
To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.
Any suggestion is greatly appreciated. Thank you for your help!
Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:
$$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$
Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
My attempt:
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
$langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that
$(1) space forall N, exists n>N: d_n > 0$.
$(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.
We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$
Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.
To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.
real-analysis proof-verification alternative-proof cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Does my attempt look fine or contain logical flaws/gaps?
To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.
Any suggestion is greatly appreciated. Thank you for your help!
Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:
$$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$
Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
My attempt:
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
$langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that
$(1) space forall N, exists n>N: d_n > 0$.
$(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.
We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$
Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.
To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.
real-analysis proof-verification alternative-proof cauchy-sequences
$endgroup$
Does my attempt look fine or contain logical flaws/gaps?
To prove $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$, I use contrapositive. I would like to ask a direct and more concise proof.
Any suggestion is greatly appreciated. Thank you for your help!
Let $mathcal{C}$ be the set of Cauchy sequences of rationals and $d_n=a_n-b_n$. We define relations $preccurlyeq_1$, $preccurlyeq_2$, and $approx$ as follows:
$$begin{align}langle a_n rangle preccurlyeq_1 langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: d_n < epsilon\ langle a_n rangle preccurlyeq_2 langle b_n rangle &iff exists N, forall n>N: d_n le 0\ langle a_n rangle approx langle b_n rangle &iff forall epsilon >0, exists N, forall n>N: |d_n| < epsilon end{align}$$
Theorem: $langle a_n rangle preccurlyeq_1 langle b_n rangle iff langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
My attempt:
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longleftarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
$langle a_n rangle preccurlyeq_2 langle b_n rangle implies exists N, forall n>N: d_n le 0 implies$ $forall epsilon >0, exists N, forall n>N: d_n < epsilon implies$ $langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle approx langle b_n rangle implies forall epsilon >0, exists N, forall n>N: |d_n| < epsilon implies forall epsilon >0, exists N, forall n>N:$ $-epsilon < d_n < epsilon implies forall epsilon >0, exists N, forall n>N: d_n < epsilon implies langle a_n rangle preccurlyeq_1 langle b_n rangle$.
$langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$
Assume that $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$. It follows that
$(1) space forall N, exists n>N: d_n > 0$.
$(2) space exists epsilon>0, forall N, exists n>N: |d_n| ge epsilon$.
We then define mappings $f:Bbb N to Bbb N$ by $$f(N)= min {n in Bbb N mid n> N wedge d_n > 0}$$ and $h:Bbb N to Bbb N$ by $$h(N)= min left {m in Bbb N ,middlevert, forall n > m: |a_n - a_{f(N)}| < dfrac{d_{f(N)}}{2} wedge |b_n - b_{f(N)}| < dfrac{d_{f(N)}}{2} right }$$
Such $f(N)$ exists by $(1)$. Such $h(N)$ exists by the fact that $langle a_n rangle$ and $langle b_n rangle$ are Cauchy sequences and that $d_{f(N)}>0$. It follows that $forall n > h(N): d_n > 0$. Moreover, $exists n > h(N): |d_n| ge epsilon$ by $(2)$. As a result, $exists n > h(N):$ $d_n ge epsilon$.
To sum up, $exists epsilon >0, forall N, exists n>N:d_n ge epsilon$. As a result, $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Hence $langle a_n rangle not preccurlyeq_2 langle b_n rangle$ and $langle a_n rangle not approx langle b_n rangle$ $implies$ $langle a_n rangle not preccurlyeq_1 langle b_n rangle$. Thus $langle a_n rangle preccurlyeq_1 langle b_n rangle Longrightarrow langle a_n rangle preccurlyeq_2 langle b_n rangle$ or $langle a_n rangle approx langle b_n rangle$.
real-analysis proof-verification alternative-proof cauchy-sequences
real-analysis proof-verification alternative-proof cauchy-sequences
edited Jan 31 at 11:08
Le Anh Dung
asked Jan 31 at 10:57


Le Anh DungLe Anh Dung
1,4511621
1,4511621
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094760%2fprove-that-a-n-preccurlyeq-1-b-n-iff-a-n-preccurlyeq-2-b-n-or-a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094760%2fprove-that-a-n-preccurlyeq-1-b-n-iff-a-n-preccurlyeq-2-b-n-or-a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown