Approve that $f = frac{x}{1 - x^2}$ is an injective function












1












$begingroup$


Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.



My solution:



Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$



$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$



Two cases:



1) $x = y$



or



2) $(xy(y+x) +1 ) = 0$



Edit:





$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $



Two cases:



1) $x = y$



or



2) $xy = -1$





We reject the second. So, f is injective function



My question:



1) Can we reject the second case? Please explain!



Answer of the Community



No, we can not reject the second case !










share|cite|improve this question











$endgroup$












  • $begingroup$
    $xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
    $endgroup$
    – Yanko
    Jan 12 at 12:50










  • $begingroup$
    Thank you for your comment
    $endgroup$
    – Dimitris Dimitriadis
    Jan 12 at 13:10
















1












$begingroup$


Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.



My solution:



Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$



$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$



Two cases:



1) $x = y$



or



2) $(xy(y+x) +1 ) = 0$



Edit:





$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $



Two cases:



1) $x = y$



or



2) $xy = -1$





We reject the second. So, f is injective function



My question:



1) Can we reject the second case? Please explain!



Answer of the Community



No, we can not reject the second case !










share|cite|improve this question











$endgroup$












  • $begingroup$
    $xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
    $endgroup$
    – Yanko
    Jan 12 at 12:50










  • $begingroup$
    Thank you for your comment
    $endgroup$
    – Dimitris Dimitriadis
    Jan 12 at 13:10














1












1








1





$begingroup$


Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.



My solution:



Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$



$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$



Two cases:



1) $x = y$



or



2) $(xy(y+x) +1 ) = 0$



Edit:





$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $



Two cases:



1) $x = y$



or



2) $xy = -1$





We reject the second. So, f is injective function



My question:



1) Can we reject the second case? Please explain!



Answer of the Community



No, we can not reject the second case !










share|cite|improve this question











$endgroup$




Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.



My solution:



Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$



$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$



Two cases:



1) $x = y$



or



2) $(xy(y+x) +1 ) = 0$



Edit:





$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $



Two cases:



1) $x = y$



or



2) $xy = -1$





We reject the second. So, f is injective function



My question:



1) Can we reject the second case? Please explain!



Answer of the Community



No, we can not reject the second case !







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 13:18







Dimitris Dimitriadis

















asked Jan 12 at 12:48









Dimitris DimitriadisDimitris Dimitriadis

478




478












  • $begingroup$
    $xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
    $endgroup$
    – Yanko
    Jan 12 at 12:50










  • $begingroup$
    Thank you for your comment
    $endgroup$
    – Dimitris Dimitriadis
    Jan 12 at 13:10


















  • $begingroup$
    $xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
    $endgroup$
    – Yanko
    Jan 12 at 12:50










  • $begingroup$
    Thank you for your comment
    $endgroup$
    – Dimitris Dimitriadis
    Jan 12 at 13:10
















$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50




$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50












$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10




$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10










3 Answers
3






active

oldest

votes


















1












$begingroup$

Going by the very definition, as you did:



$$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$



$$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$



Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example



$$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$



and etc.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    It is not an injective function as we can see from horizontal line test.



    enter image description here






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      It equals for $x,y$ such that $xcdot y = -1$.
      $endgroup$
      – Yanko
      Jan 12 at 12:52



















    0












    $begingroup$

    There's an error in your computation:



    $$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
    end{cases}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I edited. Thank you
      $endgroup$
      – Dimitris Dimitriadis
      Jan 12 at 13:10










    • $begingroup$
      You can not say that $y= frac{1}{x}$ because $x$ can be $0$
      $endgroup$
      – Dimitris Dimitriadis
      Jan 12 at 13:12













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070862%2fapprove-that-f-fracx1-x2-is-an-injective-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Going by the very definition, as you did:



    $$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$



    $$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$



    Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example



    $$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$



    and etc.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Going by the very definition, as you did:



      $$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$



      $$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$



      Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example



      $$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$



      and etc.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Going by the very definition, as you did:



        $$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$



        $$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$



        Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example



        $$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$



        and etc.






        share|cite|improve this answer









        $endgroup$



        Going by the very definition, as you did:



        $$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$



        $$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$



        Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example



        $$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$



        and etc.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 12 at 12:59









        DonAntonioDonAntonio

        178k1494230




        178k1494230























            3












            $begingroup$

            It is not an injective function as we can see from horizontal line test.



            enter image description here






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              It equals for $x,y$ such that $xcdot y = -1$.
              $endgroup$
              – Yanko
              Jan 12 at 12:52
















            3












            $begingroup$

            It is not an injective function as we can see from horizontal line test.



            enter image description here






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              It equals for $x,y$ such that $xcdot y = -1$.
              $endgroup$
              – Yanko
              Jan 12 at 12:52














            3












            3








            3





            $begingroup$

            It is not an injective function as we can see from horizontal line test.



            enter image description here






            share|cite|improve this answer









            $endgroup$



            It is not an injective function as we can see from horizontal line test.



            enter image description here







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 12 at 12:52









            Siong Thye GohSiong Thye Goh

            101k1466118




            101k1466118












            • $begingroup$
              It equals for $x,y$ such that $xcdot y = -1$.
              $endgroup$
              – Yanko
              Jan 12 at 12:52


















            • $begingroup$
              It equals for $x,y$ such that $xcdot y = -1$.
              $endgroup$
              – Yanko
              Jan 12 at 12:52
















            $begingroup$
            It equals for $x,y$ such that $xcdot y = -1$.
            $endgroup$
            – Yanko
            Jan 12 at 12:52




            $begingroup$
            It equals for $x,y$ such that $xcdot y = -1$.
            $endgroup$
            – Yanko
            Jan 12 at 12:52











            0












            $begingroup$

            There's an error in your computation:



            $$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
            end{cases}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I edited. Thank you
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:10










            • $begingroup$
              You can not say that $y= frac{1}{x}$ because $x$ can be $0$
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:12


















            0












            $begingroup$

            There's an error in your computation:



            $$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
            end{cases}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              I edited. Thank you
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:10










            • $begingroup$
              You can not say that $y= frac{1}{x}$ because $x$ can be $0$
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:12
















            0












            0








            0





            $begingroup$

            There's an error in your computation:



            $$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
            end{cases}$$






            share|cite|improve this answer











            $endgroup$



            There's an error in your computation:



            $$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
            end{cases}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 12 at 13:14

























            answered Jan 12 at 13:07









            BernardBernard

            121k740116




            121k740116












            • $begingroup$
              I edited. Thank you
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:10










            • $begingroup$
              You can not say that $y= frac{1}{x}$ because $x$ can be $0$
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:12




















            • $begingroup$
              I edited. Thank you
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:10










            • $begingroup$
              You can not say that $y= frac{1}{x}$ because $x$ can be $0$
              $endgroup$
              – Dimitris Dimitriadis
              Jan 12 at 13:12


















            $begingroup$
            I edited. Thank you
            $endgroup$
            – Dimitris Dimitriadis
            Jan 12 at 13:10




            $begingroup$
            I edited. Thank you
            $endgroup$
            – Dimitris Dimitriadis
            Jan 12 at 13:10












            $begingroup$
            You can not say that $y= frac{1}{x}$ because $x$ can be $0$
            $endgroup$
            – Dimitris Dimitriadis
            Jan 12 at 13:12






            $begingroup$
            You can not say that $y= frac{1}{x}$ because $x$ can be $0$
            $endgroup$
            – Dimitris Dimitriadis
            Jan 12 at 13:12




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070862%2fapprove-that-f-fracx1-x2-is-an-injective-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith