Approve that $f = frac{x}{1 - x^2}$ is an injective function
$begingroup$
Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.
My solution:
Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$
Two cases:
1) $x = y$
or
2) $(xy(y+x) +1 ) = 0$
Edit:
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $
Two cases:
1) $x = y$
or
2) $xy = -1$
We reject the second. So, f is injective function
My question:
1) Can we reject the second case? Please explain!
Answer of the Community
No, we can not reject the second case !
calculus
$endgroup$
add a comment |
$begingroup$
Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.
My solution:
Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$
Two cases:
1) $x = y$
or
2) $(xy(y+x) +1 ) = 0$
Edit:
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $
Two cases:
1) $x = y$
or
2) $xy = -1$
We reject the second. So, f is injective function
My question:
1) Can we reject the second case? Please explain!
Answer of the Community
No, we can not reject the second case !
calculus
$endgroup$
$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50
$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
add a comment |
$begingroup$
Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.
My solution:
Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$
Two cases:
1) $x = y$
or
2) $(xy(y+x) +1 ) = 0$
Edit:
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $
Two cases:
1) $x = y$
or
2) $xy = -1$
We reject the second. So, f is injective function
My question:
1) Can we reject the second case? Please explain!
Answer of the Community
No, we can not reject the second case !
calculus
$endgroup$
Assume that $f: R setminus {-1,1} to R$ and $f = frac{x}{1-x^2}$. Approve that $f$ is an injective function.
My solution:
Based on the theory: for each $x,y in R setminus {-1,1 } $ if $ f(x) = f(y) $ then $x=y$
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y^2 - x^2) Leftrightarrow x-y = xy(y-x)(y+x) Leftrightarrow (y-x)[xy(y+x) +1 ) = 0$
Two cases:
1) $x = y$
or
2) $(xy(y+x) +1 ) = 0$
Edit:
$ x - xy^2 = y -yx^2 Leftrightarrow x - y = xy^2 - x^2y Leftrightarrow x-y = xy(y - x) $
Two cases:
1) $x = y$
or
2) $xy = -1$
We reject the second. So, f is injective function
My question:
1) Can we reject the second case? Please explain!
Answer of the Community
No, we can not reject the second case !
calculus
calculus
edited Jan 12 at 13:18
Dimitris Dimitriadis
asked Jan 12 at 12:48


Dimitris DimitriadisDimitris Dimitriadis
478
478
$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50
$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
add a comment |
$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50
$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50
$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50
$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Going by the very definition, as you did:
$$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$
$$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$
Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example
$$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$
and etc.
$endgroup$
add a comment |
$begingroup$
It is not an injective function as we can see from horizontal line test.
$endgroup$
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
add a comment |
$begingroup$
There's an error in your computation:
$$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
end{cases}$$
$endgroup$
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070862%2fapprove-that-f-fracx1-x2-is-an-injective-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Going by the very definition, as you did:
$$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$
$$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$
Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example
$$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$
and etc.
$endgroup$
add a comment |
$begingroup$
Going by the very definition, as you did:
$$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$
$$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$
Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example
$$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$
and etc.
$endgroup$
add a comment |
$begingroup$
Going by the very definition, as you did:
$$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$
$$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$
Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example
$$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$
and etc.
$endgroup$
Going by the very definition, as you did:
$$f(x)=f(y)ifffrac x{1-x^2}=frac y{1-y^2}iff x-xy^2=y-x^2yiff $$
$$iff(x-y)=-xy(x-y)iffbegin{cases}x=y\or\xy=-1end{cases}$$
Thus, any pair of numbers $;x,,yinBbb Rsetminus{-1,1};$ s.t. $;xy=-1;$ give you a counterexample to injectivity. For example
$$x=-2,,y=frac12;,;text{and certainly:};;f(-2)=frac{-2}{1-4}=frac23=frac{frac12}{1-frac14} =fleft(frac12right)$$
and etc.
answered Jan 12 at 12:59
DonAntonioDonAntonio
178k1494230
178k1494230
add a comment |
add a comment |
$begingroup$
It is not an injective function as we can see from horizontal line test.
$endgroup$
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
add a comment |
$begingroup$
It is not an injective function as we can see from horizontal line test.
$endgroup$
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
add a comment |
$begingroup$
It is not an injective function as we can see from horizontal line test.
$endgroup$
It is not an injective function as we can see from horizontal line test.
answered Jan 12 at 12:52


Siong Thye GohSiong Thye Goh
101k1466118
101k1466118
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
add a comment |
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
$begingroup$
It equals for $x,y$ such that $xcdot y = -1$.
$endgroup$
– Yanko
Jan 12 at 12:52
add a comment |
$begingroup$
There's an error in your computation:
$$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
end{cases}$$
$endgroup$
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
add a comment |
$begingroup$
There's an error in your computation:
$$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
end{cases}$$
$endgroup$
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
add a comment |
$begingroup$
There's an error in your computation:
$$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
end{cases}$$
$endgroup$
There's an error in your computation:
$$ x - y = xy^2 - x^2y iff x-y = xycolor{red}{(y - x)}iffbegin{cases}x=y \ xy=-1iff y=-frac1x, ; xne 0
end{cases}$$
edited Jan 12 at 13:14
answered Jan 12 at 13:07
BernardBernard
121k740116
121k740116
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
add a comment |
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
I edited. Thank you
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
$begingroup$
You can not say that $y= frac{1}{x}$ because $x$ can be $0$
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:12
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070862%2fapprove-that-f-fracx1-x2-is-an-injective-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$xy^2-x^2y = xy(y-x)$ no squares on the right hand side...
$endgroup$
– Yanko
Jan 12 at 12:50
$begingroup$
Thank you for your comment
$endgroup$
– Dimitris Dimitriadis
Jan 12 at 13:10