Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$












4












$begingroup$


Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$



My Attempt:



$forall x: |cos(x)|leq 1$, Therefore:



$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$



but I can't find a way to bound the limit such that I could prove that:



$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$



which would finish the proof.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
    $endgroup$
    – Mindlack
    Jan 18 at 17:47


















4












$begingroup$


Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$



My Attempt:



$forall x: |cos(x)|leq 1$, Therefore:



$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$



but I can't find a way to bound the limit such that I could prove that:



$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$



which would finish the proof.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
    $endgroup$
    – Mindlack
    Jan 18 at 17:47
















4












4








4


1



$begingroup$


Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$



My Attempt:



$forall x: |cos(x)|leq 1$, Therefore:



$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$



but I can't find a way to bound the limit such that I could prove that:



$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$



which would finish the proof.










share|cite|improve this question











$endgroup$




Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$



My Attempt:



$forall x: |cos(x)|leq 1$, Therefore:



$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$



but I can't find a way to bound the limit such that I could prove that:



$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$



which would finish the proof.







real-analysis calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 18 at 17:52









mathcounterexamples.net

26.9k22157




26.9k22157










asked Jan 18 at 17:32









JnevenJneven

905322




905322








  • 1




    $begingroup$
    Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
    $endgroup$
    – Mindlack
    Jan 18 at 17:47
















  • 1




    $begingroup$
    Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
    $endgroup$
    – Mindlack
    Jan 18 at 17:47










1




1




$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47






$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47












2 Answers
2






active

oldest

votes


















7












$begingroup$

Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
$$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
= lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
= lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$

The sum splits into
$$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
converging to $frac14$, and the remainder term bounded by
$$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
which converges to $0$. Therefore, your original limit is $frac14$.






share|cite|improve this answer









$endgroup$





















    4












    $begingroup$

    You have
    $$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$



    And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:



    $$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$



    And using Taylor's theorem, you get for all $x in mathbb R$



    $$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$



    Therefore
    $$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$



    As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.



    Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078540%2ffind-lim-n-to-infty-leftn-sum-k-1-n-cos-frac-sqrtkn-rig%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
      $$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
      = lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
      = lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$

      The sum splits into
      $$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
      converging to $frac14$, and the remainder term bounded by
      $$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
      which converges to $0$. Therefore, your original limit is $frac14$.






      share|cite|improve this answer









      $endgroup$


















        7












        $begingroup$

        Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
        $$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
        = lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
        = lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$

        The sum splits into
        $$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
        converging to $frac14$, and the remainder term bounded by
        $$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
        which converges to $0$. Therefore, your original limit is $frac14$.






        share|cite|improve this answer









        $endgroup$
















          7












          7








          7





          $begingroup$

          Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
          $$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
          = lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
          = lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$

          The sum splits into
          $$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
          converging to $frac14$, and the remainder term bounded by
          $$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
          which converges to $0$. Therefore, your original limit is $frac14$.






          share|cite|improve this answer









          $endgroup$



          Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
          $$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
          = lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
          = lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$

          The sum splits into
          $$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
          converging to $frac14$, and the remainder term bounded by
          $$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
          which converges to $0$. Therefore, your original limit is $frac14$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 18 at 18:05









          W-t-PW-t-P

          1,287611




          1,287611























              4












              $begingroup$

              You have
              $$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$



              And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:



              $$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$



              And using Taylor's theorem, you get for all $x in mathbb R$



              $$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$



              Therefore
              $$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$



              As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.



              Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.






              share|cite|improve this answer









              $endgroup$


















                4












                $begingroup$

                You have
                $$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$



                And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:



                $$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$



                And using Taylor's theorem, you get for all $x in mathbb R$



                $$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$



                Therefore
                $$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$



                As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.



                Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.






                share|cite|improve this answer









                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  You have
                  $$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$



                  And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:



                  $$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$



                  And using Taylor's theorem, you get for all $x in mathbb R$



                  $$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$



                  Therefore
                  $$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$



                  As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.



                  Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.






                  share|cite|improve this answer









                  $endgroup$



                  You have
                  $$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$



                  And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:



                  $$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$



                  And using Taylor's theorem, you get for all $x in mathbb R$



                  $$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$



                  Therefore
                  $$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$



                  As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.



                  Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 18 at 18:07









                  mathcounterexamples.netmathcounterexamples.net

                  26.9k22157




                  26.9k22157






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078540%2ffind-lim-n-to-infty-leftn-sum-k-1-n-cos-frac-sqrtkn-rig%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith