Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$
$begingroup$
Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$
My Attempt:
$forall x: |cos(x)|leq 1$, Therefore:
$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$
but I can't find a way to bound the limit such that I could prove that:
$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$
which would finish the proof.
real-analysis calculus limits
$endgroup$
add a comment |
$begingroup$
Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$
My Attempt:
$forall x: |cos(x)|leq 1$, Therefore:
$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$
but I can't find a way to bound the limit such that I could prove that:
$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$
which would finish the proof.
real-analysis calculus limits
$endgroup$
1
$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47
add a comment |
$begingroup$
Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$
My Attempt:
$forall x: |cos(x)|leq 1$, Therefore:
$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$
but I can't find a way to bound the limit such that I could prove that:
$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$
which would finish the proof.
real-analysis calculus limits
$endgroup$
Find $lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right)$
My Attempt:
$forall x: |cos(x)|leq 1$, Therefore:
$$lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq lim_{n to infty} left(n - left| sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right| right) leq lim_{n to infty} left( sum_{k=1}^{n} |cos frac{sqrt{k}}{n} | right) leq lim_{n to infty} left(n - sum_{k=1} ^{n} k right) = 0$$
but I can't find a way to bound the limit such that I could prove that:
$$0 leq lim_{n to infty} left(n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} right) leq 0$$
which would finish the proof.
real-analysis calculus limits
real-analysis calculus limits
edited Jan 18 at 17:52


mathcounterexamples.net
26.9k22157
26.9k22157
asked Jan 18 at 17:32


JnevenJneven
905322
905322
1
$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47
add a comment |
1
$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47
1
1
$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47
$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
$$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
= lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
= lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$
The sum splits into
$$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
converging to $frac14$, and the remainder term bounded by
$$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
which converges to $0$. Therefore, your original limit is $frac14$.
$endgroup$
add a comment |
$begingroup$
You have
$$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$
And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:
$$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$
And using Taylor's theorem, you get for all $x in mathbb R$
$$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$
Therefore
$$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$
As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.
Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078540%2ffind-lim-n-to-infty-leftn-sum-k-1-n-cos-frac-sqrtkn-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
$$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
= lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
= lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$
The sum splits into
$$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
converging to $frac14$, and the remainder term bounded by
$$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
which converges to $0$. Therefore, your original limit is $frac14$.
$endgroup$
add a comment |
$begingroup$
Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
$$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
= lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
= lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$
The sum splits into
$$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
converging to $frac14$, and the remainder term bounded by
$$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
which converges to $0$. Therefore, your original limit is $frac14$.
$endgroup$
add a comment |
$begingroup$
Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
$$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
= lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
= lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$
The sum splits into
$$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
converging to $frac14$, and the remainder term bounded by
$$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
which converges to $0$. Therefore, your original limit is $frac14$.
$endgroup$
Using the estimate $cos(x)=1-frac12,x^2+O(x^4)$, we get
$$ lim_{ntoinfty} left(n-sum_{k=1}^{n} cosfrac{sqrt{k}}{n} right)
= lim_{ntoinfty} sum_{k=1}^n left( 1-cosfrac{sqrt k}nright)
= lim_{ntoinfty} sum_{k=1}^n left( frac k{2n^2} + OBig(frac{k^2}{n^4}Big) right). $$
The sum splits into
$$ sum_{k=1}^n frac k{2n^2} = frac1{2n^2} frac{n(n+1)}2 $$
converging to $frac14$, and the remainder term bounded by
$$ frac1{n^4}frac{n(n+1)(2n+1)}6 , $$
which converges to $0$. Therefore, your original limit is $frac14$.
answered Jan 18 at 18:05
W-t-PW-t-P
1,287611
1,287611
add a comment |
add a comment |
$begingroup$
You have
$$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$
And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:
$$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$
And using Taylor's theorem, you get for all $x in mathbb R$
$$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$
Therefore
$$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$
As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.
Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.
$endgroup$
add a comment |
$begingroup$
You have
$$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$
And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:
$$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$
And using Taylor's theorem, you get for all $x in mathbb R$
$$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$
Therefore
$$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$
As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.
Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.
$endgroup$
add a comment |
$begingroup$
You have
$$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$
And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:
$$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$
And using Taylor's theorem, you get for all $x in mathbb R$
$$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$
Therefore
$$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$
As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.
Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.
$endgroup$
You have
$$u_n = n - sum_{k=1} ^{n} cos frac{sqrt{k}}{n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}right)$$
And as $sum_{k=1} ^{n} k = frac{n(n+1)}{2}$:
$$u_n - frac{n+1}{4n} = sum_{k=1} ^{n}left(1-cos frac{sqrt{k}}{n}-frac{k}{2n^2}right )$$
And using Taylor's theorem, you get for all $x in mathbb R$
$$leftvert 1-cos(x)-x^2/2 rightvert leq x^4/24.$$
Therefore
$$leftvert u_n - frac{n+1}{4n} rightvert le sum_{k=1} ^{n}leftvert1-cos frac{sqrt{k}}{n}-frac{k}{4n^2}rightvert le frac{1}{24n^4}sum_{k=1} ^{n} k^2 tag{1}$$
As $$sum_{k=1} ^{n} k^2 = frac{n(n+1)(2n+1)}{6}$$ the RHS of inequality $(1)$ converges to $0$.
Finaly $(u_n)$ converges to $1/4$ as $limlimits_{n to infty} frac{n+1}{4n} =1/4$.
answered Jan 18 at 18:07


mathcounterexamples.netmathcounterexamples.net
26.9k22157
26.9k22157
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078540%2ffind-lim-n-to-infty-leftn-sum-k-1-n-cos-frac-sqrtkn-rig%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: $ |1-cos(x)-x^2/2| leq x^4/24$ if $|x| leq 1$.
$endgroup$
– Mindlack
Jan 18 at 17:47