general evaluation for $left lfloor frac{3^n}{2^k} right rfloor$ and properties












0












$begingroup$


I considered the identity $sum_{r=0}^{n}binom{n}{r}2^r = 3^n$.



Hence $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor = left lfloor frac{3^n}{2^k} right rfloor$. but now i am stuck.



Can we evaluate this value any better?



Thanks










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What any better are you thinking of ? This is a quite simple expression.
    $endgroup$
    – Yves Daoust
    Jan 18 at 23:21






  • 1




    $begingroup$
    I think it should be $lfloor sum_{r=0}^kbinom{n}r 2^{r-k} rfloor$. I am pretty sure this cannot be simplified.
    $endgroup$
    – Mike Earnest
    Jan 18 at 23:45










  • $begingroup$
    I thought it might be possible to find an expression without the floor value function. I guess probably not.
    $endgroup$
    – oren1
    Jan 19 at 10:12










  • $begingroup$
    I edited the LHS (typo) from $left lfloor sum_{r=0}^{k}binom{k}{r}2^{r-k} right rfloor$ to $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor$. does it change something?
    $endgroup$
    – oren1
    Jan 19 at 12:11
















0












$begingroup$


I considered the identity $sum_{r=0}^{n}binom{n}{r}2^r = 3^n$.



Hence $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor = left lfloor frac{3^n}{2^k} right rfloor$. but now i am stuck.



Can we evaluate this value any better?



Thanks










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What any better are you thinking of ? This is a quite simple expression.
    $endgroup$
    – Yves Daoust
    Jan 18 at 23:21






  • 1




    $begingroup$
    I think it should be $lfloor sum_{r=0}^kbinom{n}r 2^{r-k} rfloor$. I am pretty sure this cannot be simplified.
    $endgroup$
    – Mike Earnest
    Jan 18 at 23:45










  • $begingroup$
    I thought it might be possible to find an expression without the floor value function. I guess probably not.
    $endgroup$
    – oren1
    Jan 19 at 10:12










  • $begingroup$
    I edited the LHS (typo) from $left lfloor sum_{r=0}^{k}binom{k}{r}2^{r-k} right rfloor$ to $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor$. does it change something?
    $endgroup$
    – oren1
    Jan 19 at 12:11














0












0








0





$begingroup$


I considered the identity $sum_{r=0}^{n}binom{n}{r}2^r = 3^n$.



Hence $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor = left lfloor frac{3^n}{2^k} right rfloor$. but now i am stuck.



Can we evaluate this value any better?



Thanks










share|cite|improve this question











$endgroup$




I considered the identity $sum_{r=0}^{n}binom{n}{r}2^r = 3^n$.



Hence $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor = left lfloor frac{3^n}{2^k} right rfloor$. but now i am stuck.



Can we evaluate this value any better?



Thanks







combinatorics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 12:08







oren1

















asked Jan 18 at 22:49









oren1oren1

737




737








  • 1




    $begingroup$
    What any better are you thinking of ? This is a quite simple expression.
    $endgroup$
    – Yves Daoust
    Jan 18 at 23:21






  • 1




    $begingroup$
    I think it should be $lfloor sum_{r=0}^kbinom{n}r 2^{r-k} rfloor$. I am pretty sure this cannot be simplified.
    $endgroup$
    – Mike Earnest
    Jan 18 at 23:45










  • $begingroup$
    I thought it might be possible to find an expression without the floor value function. I guess probably not.
    $endgroup$
    – oren1
    Jan 19 at 10:12










  • $begingroup$
    I edited the LHS (typo) from $left lfloor sum_{r=0}^{k}binom{k}{r}2^{r-k} right rfloor$ to $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor$. does it change something?
    $endgroup$
    – oren1
    Jan 19 at 12:11














  • 1




    $begingroup$
    What any better are you thinking of ? This is a quite simple expression.
    $endgroup$
    – Yves Daoust
    Jan 18 at 23:21






  • 1




    $begingroup$
    I think it should be $lfloor sum_{r=0}^kbinom{n}r 2^{r-k} rfloor$. I am pretty sure this cannot be simplified.
    $endgroup$
    – Mike Earnest
    Jan 18 at 23:45










  • $begingroup$
    I thought it might be possible to find an expression without the floor value function. I guess probably not.
    $endgroup$
    – oren1
    Jan 19 at 10:12










  • $begingroup$
    I edited the LHS (typo) from $left lfloor sum_{r=0}^{k}binom{k}{r}2^{r-k} right rfloor$ to $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor$. does it change something?
    $endgroup$
    – oren1
    Jan 19 at 12:11








1




1




$begingroup$
What any better are you thinking of ? This is a quite simple expression.
$endgroup$
– Yves Daoust
Jan 18 at 23:21




$begingroup$
What any better are you thinking of ? This is a quite simple expression.
$endgroup$
– Yves Daoust
Jan 18 at 23:21




1




1




$begingroup$
I think it should be $lfloor sum_{r=0}^kbinom{n}r 2^{r-k} rfloor$. I am pretty sure this cannot be simplified.
$endgroup$
– Mike Earnest
Jan 18 at 23:45




$begingroup$
I think it should be $lfloor sum_{r=0}^kbinom{n}r 2^{r-k} rfloor$. I am pretty sure this cannot be simplified.
$endgroup$
– Mike Earnest
Jan 18 at 23:45












$begingroup$
I thought it might be possible to find an expression without the floor value function. I guess probably not.
$endgroup$
– oren1
Jan 19 at 10:12




$begingroup$
I thought it might be possible to find an expression without the floor value function. I guess probably not.
$endgroup$
– oren1
Jan 19 at 10:12












$begingroup$
I edited the LHS (typo) from $left lfloor sum_{r=0}^{k}binom{k}{r}2^{r-k} right rfloor$ to $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor$. does it change something?
$endgroup$
– oren1
Jan 19 at 12:11




$begingroup$
I edited the LHS (typo) from $left lfloor sum_{r=0}^{k}binom{k}{r}2^{r-k} right rfloor$ to $left lfloor sum_{r=0}^{n}binom{n}{r}2^{r-k} right rfloor$. does it change something?
$endgroup$
– oren1
Jan 19 at 12:11










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078842%2fgeneral-evaluation-for-left-lfloor-frac3n2k-right-rfloor-and-proper%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078842%2fgeneral-evaluation-for-left-lfloor-frac3n2k-right-rfloor-and-proper%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]