Proving that $sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr}$.
$begingroup$
I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.
I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$
linear-algebra differential-geometry
$endgroup$
add a comment |
$begingroup$
I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.
I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$
linear-algebra differential-geometry
$endgroup$
$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53
add a comment |
$begingroup$
I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.
I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$
linear-algebra differential-geometry
$endgroup$
I want to prove the following identity: if $A$ is a $3times 3$ matrix, then
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=det(A)varepsilon_{pqr},$$
where $varepsilon$ is the Levi-Civita symbol.
I know that (Leibniz formula)
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{1i}a_{2j}a_{3k}=det(A).$$
However I cant see why
$$sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{ijk}a_{pi}a_{qj}a_{rk}=sum_{i=1}^3sum_{j=1}^3sum_{k=1}^3varepsilon_{pqr}varepsilon_{ijk}a_{1i}a_{2j}a_{3k}.$$
linear-algebra differential-geometry
linear-algebra differential-geometry
edited Jan 18 at 21:52
Gabriel Ribeiro
asked Jan 18 at 12:25
Gabriel RibeiroGabriel Ribeiro
1,456523
1,456523
$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53
add a comment |
$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53
$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53
$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?
$endgroup$
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078182%2fproving-that-sum-i-13-sum-j-13-sum-k-13-varepsilon-ijka-pia-qja%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?
$endgroup$
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
add a comment |
$begingroup$
It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?
$endgroup$
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
add a comment |
$begingroup$
It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?
$endgroup$
It's easy to see that it's true for $p=1, q=2, r=3$. From this, we can see that it's true when $epsilon_{pqr}=1$. Can you see why? If $epsilon_{pqr}=-1$, we will get $-det(A)$. To see why, let $p=2, q=1, r=3$. The lhs is now $epsilon_{ijk}a_{2i}a_{1j}a_{3k}=epsilon{ijk}a_{1j}a_{2i}a_{3k}=-epsilon_{jik}a_{1j}a_{2i}a_{3k}$. What happens when $epsilon_{pqr}=0$?
answered Jan 18 at 12:42
BotondBotond
5,9152832
5,9152832
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
add a comment |
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
If $varepsilon_{pqr}=0$, we have two equal indices. We can suppose $p=q$. Then, $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=-varepsilon_{jik}a_{pi}a_{pj}a_{rk}=-varepsilon_{ijk}a_{pi}a_{pj}a_{rk}$. We conclude that $varepsilon_{ijk}a_{pi}a_{pj}a_{rk}=0$. Nice!
$endgroup$
– Gabriel Ribeiro
Jan 18 at 13:04
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
$begingroup$
@GabrielRibeiro exactly :)
$endgroup$
– Botond
Jan 18 at 13:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078182%2fproving-that-sum-i-13-sum-j-13-sum-k-13-varepsilon-ijka-pia-qja%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@daw fixed. Thanks
$endgroup$
– Gabriel Ribeiro
Jan 18 at 21:53