Solve quadratic equation with two variables
$begingroup$
I can't find a solution for this equation
$$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$
Any help?
linear-algebra quadratics
$endgroup$
add a comment |
$begingroup$
I can't find a solution for this equation
$$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$
Any help?
linear-algebra quadratics
$endgroup$
add a comment |
$begingroup$
I can't find a solution for this equation
$$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$
Any help?
linear-algebra quadratics
$endgroup$
I can't find a solution for this equation
$$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$
Any help?
linear-algebra quadratics
linear-algebra quadratics
edited Jan 18 at 22:40
user1337
46110
46110
asked Jan 18 at 22:29
Mai NagahMai Nagah
34
34
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you try to solve as always you will find:
$$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$
That is:
$$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$
$$(x+y)^2-8066(x+y)+4033^2=0$$
$$((x+y) - 4033)^2=0$$
Hence $x+y=4033$.
You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.
$endgroup$
add a comment |
$begingroup$
HINT
In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
begin{align*}
frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
end{align*}
Can you proceed from here?
$endgroup$
add a comment |
$begingroup$
$$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$
$ Let: t=x-2016, s=y-2017 $, then:
$$ frac{ts}{t^2+s^2} = -frac{1}{2} $$
If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:
$$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$
Now substituting $ z=frac{s}{t} $ we finally get:
$$frac{z}{z^2+1} = -frac{1}{2}$$
$ -2z = z^2 + 1 $
$ (z+1)^2 = 0 $
so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:
$x-2016 = -y + 2017$
$x+y = 4033 $
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078823%2fsolve-quadratic-equation-with-two-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you try to solve as always you will find:
$$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$
That is:
$$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$
$$(x+y)^2-8066(x+y)+4033^2=0$$
$$((x+y) - 4033)^2=0$$
Hence $x+y=4033$.
You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.
$endgroup$
add a comment |
$begingroup$
If you try to solve as always you will find:
$$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$
That is:
$$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$
$$(x+y)^2-8066(x+y)+4033^2=0$$
$$((x+y) - 4033)^2=0$$
Hence $x+y=4033$.
You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.
$endgroup$
add a comment |
$begingroup$
If you try to solve as always you will find:
$$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$
That is:
$$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$
$$(x+y)^2-8066(x+y)+4033^2=0$$
$$((x+y) - 4033)^2=0$$
Hence $x+y=4033$.
You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.
$endgroup$
If you try to solve as always you will find:
$$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$
That is:
$$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$
$$(x+y)^2-8066(x+y)+4033^2=0$$
$$((x+y) - 4033)^2=0$$
Hence $x+y=4033$.
You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.
answered Jan 18 at 22:46
idriskameniidriskameni
743321
743321
add a comment |
add a comment |
$begingroup$
HINT
In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
begin{align*}
frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
end{align*}
Can you proceed from here?
$endgroup$
add a comment |
$begingroup$
HINT
In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
begin{align*}
frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
end{align*}
Can you proceed from here?
$endgroup$
add a comment |
$begingroup$
HINT
In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
begin{align*}
frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
end{align*}
Can you proceed from here?
$endgroup$
HINT
In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
begin{align*}
frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
end{align*}
Can you proceed from here?
answered Jan 18 at 22:42
user1337user1337
46110
46110
add a comment |
add a comment |
$begingroup$
$$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$
$ Let: t=x-2016, s=y-2017 $, then:
$$ frac{ts}{t^2+s^2} = -frac{1}{2} $$
If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:
$$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$
Now substituting $ z=frac{s}{t} $ we finally get:
$$frac{z}{z^2+1} = -frac{1}{2}$$
$ -2z = z^2 + 1 $
$ (z+1)^2 = 0 $
so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:
$x-2016 = -y + 2017$
$x+y = 4033 $
$endgroup$
add a comment |
$begingroup$
$$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$
$ Let: t=x-2016, s=y-2017 $, then:
$$ frac{ts}{t^2+s^2} = -frac{1}{2} $$
If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:
$$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$
Now substituting $ z=frac{s}{t} $ we finally get:
$$frac{z}{z^2+1} = -frac{1}{2}$$
$ -2z = z^2 + 1 $
$ (z+1)^2 = 0 $
so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:
$x-2016 = -y + 2017$
$x+y = 4033 $
$endgroup$
add a comment |
$begingroup$
$$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$
$ Let: t=x-2016, s=y-2017 $, then:
$$ frac{ts}{t^2+s^2} = -frac{1}{2} $$
If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:
$$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$
Now substituting $ z=frac{s}{t} $ we finally get:
$$frac{z}{z^2+1} = -frac{1}{2}$$
$ -2z = z^2 + 1 $
$ (z+1)^2 = 0 $
so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:
$x-2016 = -y + 2017$
$x+y = 4033 $
$endgroup$
$$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$
$ Let: t=x-2016, s=y-2017 $, then:
$$ frac{ts}{t^2+s^2} = -frac{1}{2} $$
If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:
$$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$
Now substituting $ z=frac{s}{t} $ we finally get:
$$frac{z}{z^2+1} = -frac{1}{2}$$
$ -2z = z^2 + 1 $
$ (z+1)^2 = 0 $
so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:
$x-2016 = -y + 2017$
$x+y = 4033 $
answered Jan 18 at 22:45
Dominik KutekDominik Kutek
3345
3345
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078823%2fsolve-quadratic-equation-with-two-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown