Solve quadratic equation with two variables












-3












$begingroup$


I can't find a solution for this equation



$$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$



Any help?










share|cite|improve this question











$endgroup$

















    -3












    $begingroup$


    I can't find a solution for this equation



    $$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$



    Any help?










    share|cite|improve this question











    $endgroup$















      -3












      -3








      -3





      $begingroup$


      I can't find a solution for this equation



      $$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$



      Any help?










      share|cite|improve this question











      $endgroup$




      I can't find a solution for this equation



      $$frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2}= -frac{1}{2}$$



      Any help?







      linear-algebra quadratics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 18 at 22:40









      user1337

      46110




      46110










      asked Jan 18 at 22:29









      Mai NagahMai Nagah

      34




      34






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          If you try to solve as always you will find:



          $$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$



          That is:



          $$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$



          $$(x+y)^2-8066(x+y)+4033^2=0$$



          $$((x+y) - 4033)^2=0$$



          Hence $x+y=4033$.



          You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            HINT



            In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
            begin{align*}
            frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
            end{align*}



            Can you proceed from here?






            share|cite|improve this answer









            $endgroup$





















              3












              $begingroup$

              $$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$



              $ Let: t=x-2016, s=y-2017 $, then:



              $$ frac{ts}{t^2+s^2} = -frac{1}{2} $$



              If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:



              $$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$



              Now substituting $ z=frac{s}{t} $ we finally get:



              $$frac{z}{z^2+1} = -frac{1}{2}$$



              $ -2z = z^2 + 1 $



              $ (z+1)^2 = 0 $



              so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:



              $x-2016 = -y + 2017$



              $x+y = 4033 $






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078823%2fsolve-quadratic-equation-with-two-variables%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                If you try to solve as always you will find:



                $$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$



                That is:



                $$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$



                $$(x+y)^2-8066(x+y)+4033^2=0$$



                $$((x+y) - 4033)^2=0$$



                Hence $x+y=4033$.



                You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  If you try to solve as always you will find:



                  $$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$



                  That is:



                  $$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$



                  $$(x+y)^2-8066(x+y)+4033^2=0$$



                  $$((x+y) - 4033)^2=0$$



                  Hence $x+y=4033$.



                  You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    If you try to solve as always you will find:



                    $$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$



                    That is:



                    $$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$



                    $$(x+y)^2-8066(x+y)+4033^2=0$$



                    $$((x+y) - 4033)^2=0$$



                    Hence $x+y=4033$.



                    You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.






                    share|cite|improve this answer









                    $endgroup$



                    If you try to solve as always you will find:



                    $$2(xy-2016y-2017x+(2016cdot 2017))=(-1)(x^2-4032x+2016^2+y^2-4034y+2017^2)$$



                    That is:



                    $$x^2+2xy+y^2-8066(x+y)+ 4033^2=0$$



                    $$(x+y)^2-8066(x+y)+4033^2=0$$



                    $$((x+y) - 4033)^2=0$$



                    Hence $x+y=4033$.



                    You can see that last step by doing $t=x+y$ and solving $t^2-8066t +4033^2=0$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 18 at 22:46









                    idriskameniidriskameni

                    743321




                    743321























                        3












                        $begingroup$

                        HINT



                        In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
                        begin{align*}
                        frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
                        end{align*}



                        Can you proceed from here?






                        share|cite|improve this answer









                        $endgroup$


















                          3












                          $begingroup$

                          HINT



                          In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
                          begin{align*}
                          frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
                          end{align*}



                          Can you proceed from here?






                          share|cite|improve this answer









                          $endgroup$
















                            3












                            3








                            3





                            $begingroup$

                            HINT



                            In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
                            begin{align*}
                            frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
                            end{align*}



                            Can you proceed from here?






                            share|cite|improve this answer









                            $endgroup$



                            HINT



                            In the first place, let us set that $a = x - 2016$ and $b = y - 2017$, from whence we conclude that
                            begin{align*}
                            frac{ab}{a^{2}+b^{2}} = -frac{1}{2} Longleftrightarrow 2ab = -a^{2} - b^{2} Longleftrightarrow (a + b)^{2} = 0 Longleftrightarrow a + b = 0
                            end{align*}



                            Can you proceed from here?







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 18 at 22:42









                            user1337user1337

                            46110




                            46110























                                3












                                $begingroup$

                                $$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$



                                $ Let: t=x-2016, s=y-2017 $, then:



                                $$ frac{ts}{t^2+s^2} = -frac{1}{2} $$



                                If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:



                                $$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$



                                Now substituting $ z=frac{s}{t} $ we finally get:



                                $$frac{z}{z^2+1} = -frac{1}{2}$$



                                $ -2z = z^2 + 1 $



                                $ (z+1)^2 = 0 $



                                so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:



                                $x-2016 = -y + 2017$



                                $x+y = 4033 $






                                share|cite|improve this answer









                                $endgroup$


















                                  3












                                  $begingroup$

                                  $$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$



                                  $ Let: t=x-2016, s=y-2017 $, then:



                                  $$ frac{ts}{t^2+s^2} = -frac{1}{2} $$



                                  If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:



                                  $$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$



                                  Now substituting $ z=frac{s}{t} $ we finally get:



                                  $$frac{z}{z^2+1} = -frac{1}{2}$$



                                  $ -2z = z^2 + 1 $



                                  $ (z+1)^2 = 0 $



                                  so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:



                                  $x-2016 = -y + 2017$



                                  $x+y = 4033 $






                                  share|cite|improve this answer









                                  $endgroup$
















                                    3












                                    3








                                    3





                                    $begingroup$

                                    $$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$



                                    $ Let: t=x-2016, s=y-2017 $, then:



                                    $$ frac{ts}{t^2+s^2} = -frac{1}{2} $$



                                    If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:



                                    $$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$



                                    Now substituting $ z=frac{s}{t} $ we finally get:



                                    $$frac{z}{z^2+1} = -frac{1}{2}$$



                                    $ -2z = z^2 + 1 $



                                    $ (z+1)^2 = 0 $



                                    so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:



                                    $x-2016 = -y + 2017$



                                    $x+y = 4033 $






                                    share|cite|improve this answer









                                    $endgroup$



                                    $$ frac{(x-2016)(y-2017)}{(x-2016)^2 + (y-2017)^2} $$



                                    $ Let: t=x-2016, s=y-2017 $, then:



                                    $$ frac{ts}{t^2+s^2} = -frac{1}{2} $$



                                    If $t=0$ we have no solution, so multiply left side by $frac{t^2}{t^2} $ getting:



                                    $$ frac{frac{s}{t}}{(frac{s}{t})^2 + 1} = -frac{1}{2} $$



                                    Now substituting $ z=frac{s}{t} $ we finally get:



                                    $$frac{z}{z^2+1} = -frac{1}{2}$$



                                    $ -2z = z^2 + 1 $



                                    $ (z+1)^2 = 0 $



                                    so $ z=-1 $, that is $t = -s$, in terms of $x,y$ it means:



                                    $x-2016 = -y + 2017$



                                    $x+y = 4033 $







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 18 at 22:45









                                    Dominik KutekDominik Kutek

                                    3345




                                    3345






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078823%2fsolve-quadratic-equation-with-two-variables%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                        SQL update select statement

                                        'app-layout' is not a known element: how to share Component with different Modules