If $leftVert ArightVert geq c$ then $left|lambdaright|>c$ for all eigenvalues of $A$












0












$begingroup$


Let $Aintext{Mat}_{ntimes n}$ be an invertible matrix such that$leftVert ArightVert geq c$
where $leftVert cdotrightVert $ is the matrix norm . Is it true
that for every $lambda$ eigenvalue of $A$ we have $left|lambdaright|geq c$?



I know that $leftVert ArightVert geqleft|lambdaright|$ but
why would $left|lambdaright|geq c$?



Also Im familiar with the norm inequality $left|Axright|leqleftVert ArightVert left|xright|$
but couldn't use it in favor. Any suggestions?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    What is $lVert ArVert$? Is it $lVert ArVert=sup_{lVert xrVert=1}lVert AxrVert?$
    $endgroup$
    – José Carlos Santos
    Jan 18 at 22:43










  • $begingroup$
    @JoséCarlosSantos Yes
    $endgroup$
    – Jon
    Jan 18 at 22:44
















0












$begingroup$


Let $Aintext{Mat}_{ntimes n}$ be an invertible matrix such that$leftVert ArightVert geq c$
where $leftVert cdotrightVert $ is the matrix norm . Is it true
that for every $lambda$ eigenvalue of $A$ we have $left|lambdaright|geq c$?



I know that $leftVert ArightVert geqleft|lambdaright|$ but
why would $left|lambdaright|geq c$?



Also Im familiar with the norm inequality $left|Axright|leqleftVert ArightVert left|xright|$
but couldn't use it in favor. Any suggestions?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    What is $lVert ArVert$? Is it $lVert ArVert=sup_{lVert xrVert=1}lVert AxrVert?$
    $endgroup$
    – José Carlos Santos
    Jan 18 at 22:43










  • $begingroup$
    @JoséCarlosSantos Yes
    $endgroup$
    – Jon
    Jan 18 at 22:44














0












0








0





$begingroup$


Let $Aintext{Mat}_{ntimes n}$ be an invertible matrix such that$leftVert ArightVert geq c$
where $leftVert cdotrightVert $ is the matrix norm . Is it true
that for every $lambda$ eigenvalue of $A$ we have $left|lambdaright|geq c$?



I know that $leftVert ArightVert geqleft|lambdaright|$ but
why would $left|lambdaright|geq c$?



Also Im familiar with the norm inequality $left|Axright|leqleftVert ArightVert left|xright|$
but couldn't use it in favor. Any suggestions?










share|cite|improve this question









$endgroup$




Let $Aintext{Mat}_{ntimes n}$ be an invertible matrix such that$leftVert ArightVert geq c$
where $leftVert cdotrightVert $ is the matrix norm . Is it true
that for every $lambda$ eigenvalue of $A$ we have $left|lambdaright|geq c$?



I know that $leftVert ArightVert geqleft|lambdaright|$ but
why would $left|lambdaright|geq c$?



Also Im familiar with the norm inequality $left|Axright|leqleftVert ArightVert left|xright|$
but couldn't use it in favor. Any suggestions?







linear-algebra matrices norm






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 22:40









JonJon

565414




565414








  • 1




    $begingroup$
    What is $lVert ArVert$? Is it $lVert ArVert=sup_{lVert xrVert=1}lVert AxrVert?$
    $endgroup$
    – José Carlos Santos
    Jan 18 at 22:43










  • $begingroup$
    @JoséCarlosSantos Yes
    $endgroup$
    – Jon
    Jan 18 at 22:44














  • 1




    $begingroup$
    What is $lVert ArVert$? Is it $lVert ArVert=sup_{lVert xrVert=1}lVert AxrVert?$
    $endgroup$
    – José Carlos Santos
    Jan 18 at 22:43










  • $begingroup$
    @JoséCarlosSantos Yes
    $endgroup$
    – Jon
    Jan 18 at 22:44








1




1




$begingroup$
What is $lVert ArVert$? Is it $lVert ArVert=sup_{lVert xrVert=1}lVert AxrVert?$
$endgroup$
– José Carlos Santos
Jan 18 at 22:43




$begingroup$
What is $lVert ArVert$? Is it $lVert ArVert=sup_{lVert xrVert=1}lVert AxrVert?$
$endgroup$
– José Carlos Santos
Jan 18 at 22:43












$begingroup$
@JoséCarlosSantos Yes
$endgroup$
– Jon
Jan 18 at 22:44




$begingroup$
@JoséCarlosSantos Yes
$endgroup$
– Jon
Jan 18 at 22:44










1 Answer
1






active

oldest

votes


















2












$begingroup$

No. Consider any diagonal matrix of the form $A = begin{pmatrix} c & 0 \ 0 & varepsilon I_{n-1} end{pmatrix}$ where $I_{n-1}$ is the $n-1 times n-1$ identity. Then $||A|| = c$, so clearly $||A|| geq c$, but all its other eigenvalues are $varepsilon < c$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Could nilpotent matrix be invertible?
    $endgroup$
    – Jon
    Jan 18 at 22:47










  • $begingroup$
    Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    @Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
    $endgroup$
    – MisterRiemann
    Jan 18 at 22:49






  • 1




    $begingroup$
    If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
    $endgroup$
    – DLeMeur
    Jan 18 at 22:51













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078835%2fif-left-vert-a-right-vert-geq-c-then-left-lambda-rightc-for-all-eigenv%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

No. Consider any diagonal matrix of the form $A = begin{pmatrix} c & 0 \ 0 & varepsilon I_{n-1} end{pmatrix}$ where $I_{n-1}$ is the $n-1 times n-1$ identity. Then $||A|| = c$, so clearly $||A|| geq c$, but all its other eigenvalues are $varepsilon < c$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Could nilpotent matrix be invertible?
    $endgroup$
    – Jon
    Jan 18 at 22:47










  • $begingroup$
    Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    @Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
    $endgroup$
    – MisterRiemann
    Jan 18 at 22:49






  • 1




    $begingroup$
    If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
    $endgroup$
    – DLeMeur
    Jan 18 at 22:51


















2












$begingroup$

No. Consider any diagonal matrix of the form $A = begin{pmatrix} c & 0 \ 0 & varepsilon I_{n-1} end{pmatrix}$ where $I_{n-1}$ is the $n-1 times n-1$ identity. Then $||A|| = c$, so clearly $||A|| geq c$, but all its other eigenvalues are $varepsilon < c$.






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Could nilpotent matrix be invertible?
    $endgroup$
    – Jon
    Jan 18 at 22:47










  • $begingroup$
    Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    @Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
    $endgroup$
    – MisterRiemann
    Jan 18 at 22:49






  • 1




    $begingroup$
    If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
    $endgroup$
    – DLeMeur
    Jan 18 at 22:51
















2












2








2





$begingroup$

No. Consider any diagonal matrix of the form $A = begin{pmatrix} c & 0 \ 0 & varepsilon I_{n-1} end{pmatrix}$ where $I_{n-1}$ is the $n-1 times n-1$ identity. Then $||A|| = c$, so clearly $||A|| geq c$, but all its other eigenvalues are $varepsilon < c$.






share|cite|improve this answer











$endgroup$



No. Consider any diagonal matrix of the form $A = begin{pmatrix} c & 0 \ 0 & varepsilon I_{n-1} end{pmatrix}$ where $I_{n-1}$ is the $n-1 times n-1$ identity. Then $||A|| = c$, so clearly $||A|| geq c$, but all its other eigenvalues are $varepsilon < c$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 18 at 22:51

























answered Jan 18 at 22:44









OldGodzillaOldGodzilla

58227




58227








  • 1




    $begingroup$
    Could nilpotent matrix be invertible?
    $endgroup$
    – Jon
    Jan 18 at 22:47










  • $begingroup$
    Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    @Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
    $endgroup$
    – MisterRiemann
    Jan 18 at 22:49






  • 1




    $begingroup$
    If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
    $endgroup$
    – DLeMeur
    Jan 18 at 22:51
















  • 1




    $begingroup$
    Could nilpotent matrix be invertible?
    $endgroup$
    – Jon
    Jan 18 at 22:47










  • $begingroup$
    Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
    $endgroup$
    – OldGodzilla
    Jan 18 at 22:48










  • $begingroup$
    @Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
    $endgroup$
    – MisterRiemann
    Jan 18 at 22:49






  • 1




    $begingroup$
    If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
    $endgroup$
    – DLeMeur
    Jan 18 at 22:51










1




1




$begingroup$
Could nilpotent matrix be invertible?
$endgroup$
– Jon
Jan 18 at 22:47




$begingroup$
Could nilpotent matrix be invertible?
$endgroup$
– Jon
Jan 18 at 22:47












$begingroup$
Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
$endgroup$
– OldGodzilla
Jan 18 at 22:48




$begingroup$
Ah sorry, misread. I didn't realize that the matrix needed to be invertible.
$endgroup$
– OldGodzilla
Jan 18 at 22:48












$begingroup$
Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
$endgroup$
– OldGodzilla
Jan 18 at 22:48




$begingroup$
Also, to answer your question, no. If a matrix has a zero eigenvalue then it is not invertible.
$endgroup$
– OldGodzilla
Jan 18 at 22:48












$begingroup$
@Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
$endgroup$
– MisterRiemann
Jan 18 at 22:49




$begingroup$
@Jon Indeed it couldn't, for otherwise $A^n = 0$ would imply $I = (A^{-1})^n A^n = 0$.
$endgroup$
– MisterRiemann
Jan 18 at 22:49




1




1




$begingroup$
If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
$endgroup$
– DLeMeur
Jan 18 at 22:51






$begingroup$
If you add $epsilon$ on the diagonal, it becomes invertible and constitutes a counter example for small enough $epsilon $
$endgroup$
– DLeMeur
Jan 18 at 22:51




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078835%2fif-left-vert-a-right-vert-geq-c-then-left-lambda-rightc-for-all-eigenv%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]