Inequality about exponential moment of bounded random variable












2












$begingroup$


Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.



I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.



$$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$



I wish I can get some help.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.



    I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.



    $$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$



    I wish I can get some help.










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      0



      $begingroup$


      Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.



      I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.



      $$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$



      I wish I can get some help.










      share|cite|improve this question











      $endgroup$




      Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.



      I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.



      $$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$



      I wish I can get some help.







      probability probability-theory inequality random-variables






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 12 at 10:35









      saz

      80.3k860125




      80.3k860125










      asked Jan 10 at 11:00









      456 123456 123

      1616




      1616






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Let us define
          $$
          F(x) = e^x-Ax^2-Bx.
          $$
          where
          $$
          A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
          $$
          and
          $$
          B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
          $$
          The constants $A,B$ are chosen so that
          $$
          F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
          $$
          Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
          $$
          F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
          $$
          Hence by taking expectation on $F(X)$, we have
          $$
          E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
          $$
          or equivalently
          $$
          E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
          $$
          After some calculation, we get
          $$
          A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
          $$
          and the inequality follows.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068500%2finequality-about-exponential-moment-of-bounded-random-variable%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            Let us define
            $$
            F(x) = e^x-Ax^2-Bx.
            $$
            where
            $$
            A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
            $$
            and
            $$
            B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
            $$
            The constants $A,B$ are chosen so that
            $$
            F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
            $$
            Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
            $$
            F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
            $$
            Hence by taking expectation on $F(X)$, we have
            $$
            E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
            $$
            or equivalently
            $$
            E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
            $$
            After some calculation, we get
            $$
            A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
            $$
            and the inequality follows.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Let us define
              $$
              F(x) = e^x-Ax^2-Bx.
              $$
              where
              $$
              A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
              $$
              and
              $$
              B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
              $$
              The constants $A,B$ are chosen so that
              $$
              F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
              $$
              Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
              $$
              F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
              $$
              Hence by taking expectation on $F(X)$, we have
              $$
              E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
              $$
              or equivalently
              $$
              E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
              $$
              After some calculation, we get
              $$
              A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
              $$
              and the inequality follows.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Let us define
                $$
                F(x) = e^x-Ax^2-Bx.
                $$
                where
                $$
                A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
                $$
                and
                $$
                B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
                $$
                The constants $A,B$ are chosen so that
                $$
                F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
                $$
                Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
                $$
                F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
                $$
                Hence by taking expectation on $F(X)$, we have
                $$
                E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
                $$
                or equivalently
                $$
                E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
                $$
                After some calculation, we get
                $$
                A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
                $$
                and the inequality follows.






                share|cite|improve this answer











                $endgroup$



                Let us define
                $$
                F(x) = e^x-Ax^2-Bx.
                $$
                where
                $$
                A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
                $$
                and
                $$
                B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
                $$
                The constants $A,B$ are chosen so that
                $$
                F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
                $$
                Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
                $$
                F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
                $$
                Hence by taking expectation on $F(X)$, we have
                $$
                E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
                $$
                or equivalently
                $$
                E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
                $$
                After some calculation, we get
                $$
                A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
                $$
                and the inequality follows.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 17 at 18:50

























                answered Jan 17 at 17:51









                SongSong

                11.7k628




                11.7k628






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068500%2finequality-about-exponential-moment-of-bounded-random-variable%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    SQL update select statement

                    WPF add header to Image with URL pettitions [duplicate]