Inequality about exponential moment of bounded random variable
$begingroup$
Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.
I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.
$$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$
I wish I can get some help.
probability probability-theory inequality random-variables
$endgroup$
add a comment |
$begingroup$
Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.
I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.
$$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$
I wish I can get some help.
probability probability-theory inequality random-variables
$endgroup$
add a comment |
$begingroup$
Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.
I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.
$$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$
I wish I can get some help.
probability probability-theory inequality random-variables
$endgroup$
Let $X$ be a random variable with $mathbb{E}X=0$, $-1 le X le 1$, $text{Var} (X)=sigma ^2$.
I've been trying to prove the Bernstein's inequality, and I have to show the following, but don't know how to deal with those $sigma ^2$ on the RHS.
$$mathbb{E}(e^X)le frac{1}{1+sigma ^2} e^{-sigma ^2}+frac{sigma ^2}{1+sigma ^2} e$$
I wish I can get some help.
probability probability-theory inequality random-variables
probability probability-theory inequality random-variables
edited Jan 12 at 10:35
saz
80.3k860125
80.3k860125
asked Jan 10 at 11:00
456 123456 123
1616
1616
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let us define
$$
F(x) = e^x-Ax^2-Bx.
$$ where
$$
A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
$$ and
$$
B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
$$The constants $A,B$ are chosen so that
$$
F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
$$ Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
$$
F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
$$ Hence by taking expectation on $F(X)$, we have
$$
E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
$$ or equivalently
$$
E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
$$ After some calculation, we get
$$
A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
$$ and the inequality follows.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068500%2finequality-about-exponential-moment-of-bounded-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us define
$$
F(x) = e^x-Ax^2-Bx.
$$ where
$$
A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
$$ and
$$
B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
$$The constants $A,B$ are chosen so that
$$
F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
$$ Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
$$
F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
$$ Hence by taking expectation on $F(X)$, we have
$$
E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
$$ or equivalently
$$
E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
$$ After some calculation, we get
$$
A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
$$ and the inequality follows.
$endgroup$
add a comment |
$begingroup$
Let us define
$$
F(x) = e^x-Ax^2-Bx.
$$ where
$$
A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
$$ and
$$
B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
$$The constants $A,B$ are chosen so that
$$
F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
$$ Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
$$
F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
$$ Hence by taking expectation on $F(X)$, we have
$$
E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
$$ or equivalently
$$
E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
$$ After some calculation, we get
$$
A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
$$ and the inequality follows.
$endgroup$
add a comment |
$begingroup$
Let us define
$$
F(x) = e^x-Ax^2-Bx.
$$ where
$$
A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
$$ and
$$
B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
$$The constants $A,B$ are chosen so that
$$
F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
$$ Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
$$
F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
$$ Hence by taking expectation on $F(X)$, we have
$$
E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
$$ or equivalently
$$
E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
$$ After some calculation, we get
$$
A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
$$ and the inequality follows.
$endgroup$
Let us define
$$
F(x) = e^x-Ax^2-Bx.
$$ where
$$
A=frac{e-(sigma^2+2)e^{-sigma^2}}{(1+sigma^2)^2},
$$ and
$$
B=frac{2sigma^2e-(sigma^4+2sigma^2-1)e^{-sigma^2}}{(1+sigma^2)^2}.
$$The constants $A,B$ are chosen so that
$$
F(-sigma^2) = F(1), quad F'(-sigma^2)=0, quad F''(-sigma^2)<0.
$$ Since $xmapsto e^x$ is convex and $F''(-sigma^2)<0$, the equation $F'(x) = e^x -2Ax-B=0$ has only $2$ roots $x=-sigma^2$ and $x=x_0>-sigma^2$. Since $$F'(x)begin{cases}>0,quad xin(-infty,-sigma^2)\<0,quad xin (-sigma^2,x_0)\>0,quad xin (x_0,infty)end{cases},$$ it follows that
$$
F(x) le F(-sigma^2)=F(1)quadforall xin [-1,1].
$$ Hence by taking expectation on $F(X)$, we have
$$
E[e^X-AX^2-BX]=E[e^X]-Asigma^2 le F(1),
$$ or equivalently
$$
E[e^X]le Asigma^2 +F(1)= A(sigma^2-1)-B+e.
$$ After some calculation, we get
$$
A(sigma^2-1)-B+e=frac{e^{-sigma^2}}{1+sigma^2}+frac{sigma^2 e}{1+sigma^2}
$$ and the inequality follows.
edited Jan 17 at 18:50
answered Jan 17 at 17:51
SongSong
11.7k628
11.7k628
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068500%2finequality-about-exponential-moment-of-bounded-random-variable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown