Why do all images resulting by Deeplabv 3+ become black only?












1















I tried semanticsegmentation with deeplab v3+ but I got results all black out.



I deleted the original file and put original datas in ImageSets/,JPEGImages/ and SegmentationClass/ corresponding to each.



I prepared SegmentationClassRaw image according to rule of PASCAL VOC 2012 color.



And I edited build_voc2012_data.py and segmentation_dataset.py



[build_voc2012_data.py]



FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string('image_folder',
'./VOCdevkit/VOC2012/JPEGImages',
'Folder containing images.')

tf.app.flags.DEFINE_string(
'semantic_segmentation_folder',
'./VOCdevkit/VOC2012/SegmentationClassRaw',
'Folder containing semantic segmentation annotations.')

tf.app.flags.DEFINE_string(
'list_folder',
'./VOCdevkit/VOC2012/ImageSets/Segmentation',
'Folder containing lists for training and validation')

tf.app.flags.DEFINE_string(
'output_dir',
'./tfrecord',
'Path to save converted SSTable of TensorFlow examples.')


_NUM_SHARDS = 4

# add -->>
FLAGS.image_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/JPEGImages"
FLAGS.semantic_segmentation_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/SegmentationClassRaw"
FLAGS.list_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation"
FLAGS.image_format = "png"
FLAGS.output_dir = "./pascal_voc_seg/tfrecord"
# add --<<


[segmentation_dataset.pu]



# add kani 20181115 -->>
_ORIGINAL_INFORMATION = DatasetDescriptor(
splits_to_sizes={
'train': 10,
'trainval': 2,
'val': 2,
},
num_classes=5,
ignore_label=255,
)
#add kani 20181115 --<<

# mod kani 20181115 -->>
# _DATASETS_INFORMATION = {
# 'cityscapes': _CITYSCAPES_INFORMATION,
# 'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
# 'ade20k': _ADE20K_INFORMATION,
# }

_DATASETS_INFORMATION = {
'cityscapes': _CITYSCAPES_INFORMATION,
'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
'ade20k': _ADE20K_INFORMATION,
'original': _ORIGINAL_INFORMATION,
}
# mod kani 20181115 --<<


I run train.py and vis.py like this.



[train.py command]



python train.py   --logtostderr   --train_split=trainval   --model_variant=xception_65   --atrous_rates=3   --atrous_rates=6   --atrous_rates=9   --output_stride=32   --decoder_output_stride=4   --train_crop_size=512   --train_crop_size=512   --train_batch_size=2   --training_number_of_steps=6000   --fine_tune_batch_norm=false   --tf_initial_checkpoint="./datasets/pascal_voc_seg/init_models/deeplabv3_pascal_train_aug/model.ckpt"  --train_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord" --dataset=original


[vis.py command]



python vis.py   --logtostderr   --vis_split="val"   --model_variant="xception_65"   --atrous_rates=6   --atrous_rates=12   --atrous_rates=18   --output_stride=16   --decoder_output_stride=4   --vis_crop_size=513   --vis_crop_size=513   --checkpoint_dir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"   --vis_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/vis"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord"   --max_number_of_iterations=1   --dataset=original   --max_resize_value=512   --min_resize_value=128


Both ended without a problem but I confirmed pictures in datasets/pascal_voc_seg/exp/train_on_trainval_set/vis/raw_segmentation_results/, these are black out all. why?



Is this because of train datas are bigger than 512x512?
(Train datas size are so big about 15000x13500)



[structure my directory]



/tmp/models/research/deeplab  
-README.md
-common.py
-datasets/
--__init__.py
--build_data.py
--convert_cityscapes.sh
--pascal_voc_seg/
---VOCdevkit/
----VOC2012/
-----Annotations/
-----ImageSets/
-----JPEGImages/
-----SegmentationClass/
-----SegmentationObject/
---VOCtrainval_11-May-2012.tar
---exp/
----train_on_trainval_set/
-----train/
------train.py
-----vis/
------vis.py
---init_models/
----deeplabv3_pascal_train_aug/
-----frozen_inference_graph.pb
-----model.ckpt.data-00000-of-00001
-----model.ckpt.index
---tfrecord/
----build_voc_2012.py
--__pycache__
--build_data.pyc
--download_and_convert_ade20k.sh
--remove_gt_colormap.py
--build_ade20k_data.py
--build_voc2012_data.py
--download_and_convert_voc2012.sh
--segmentation_dataset.py
--build_cityscapes_data.py
--build_voc2012_data.py.org
-export_model.py
-local_test.sh
-model_test.py
-utils/
-__init__.py
-common_test.py
-deeplab_demo.ipynb
-g3doc/
-local_test_mobilenetv2.sh
-train.py
-vis.py
-__pycache__
-core/
-eval.py
-input_preprocess.py
-model.py
-train.py.bk









share|improve this question



























    1















    I tried semanticsegmentation with deeplab v3+ but I got results all black out.



    I deleted the original file and put original datas in ImageSets/,JPEGImages/ and SegmentationClass/ corresponding to each.



    I prepared SegmentationClassRaw image according to rule of PASCAL VOC 2012 color.



    And I edited build_voc2012_data.py and segmentation_dataset.py



    [build_voc2012_data.py]



    FLAGS = tf.app.flags.FLAGS

    tf.app.flags.DEFINE_string('image_folder',
    './VOCdevkit/VOC2012/JPEGImages',
    'Folder containing images.')

    tf.app.flags.DEFINE_string(
    'semantic_segmentation_folder',
    './VOCdevkit/VOC2012/SegmentationClassRaw',
    'Folder containing semantic segmentation annotations.')

    tf.app.flags.DEFINE_string(
    'list_folder',
    './VOCdevkit/VOC2012/ImageSets/Segmentation',
    'Folder containing lists for training and validation')

    tf.app.flags.DEFINE_string(
    'output_dir',
    './tfrecord',
    'Path to save converted SSTable of TensorFlow examples.')


    _NUM_SHARDS = 4

    # add -->>
    FLAGS.image_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/JPEGImages"
    FLAGS.semantic_segmentation_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/SegmentationClassRaw"
    FLAGS.list_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation"
    FLAGS.image_format = "png"
    FLAGS.output_dir = "./pascal_voc_seg/tfrecord"
    # add --<<


    [segmentation_dataset.pu]



    # add kani 20181115 -->>
    _ORIGINAL_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
    'train': 10,
    'trainval': 2,
    'val': 2,
    },
    num_classes=5,
    ignore_label=255,
    )
    #add kani 20181115 --<<

    # mod kani 20181115 -->>
    # _DATASETS_INFORMATION = {
    # 'cityscapes': _CITYSCAPES_INFORMATION,
    # 'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
    # 'ade20k': _ADE20K_INFORMATION,
    # }

    _DATASETS_INFORMATION = {
    'cityscapes': _CITYSCAPES_INFORMATION,
    'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
    'ade20k': _ADE20K_INFORMATION,
    'original': _ORIGINAL_INFORMATION,
    }
    # mod kani 20181115 --<<


    I run train.py and vis.py like this.



    [train.py command]



    python train.py   --logtostderr   --train_split=trainval   --model_variant=xception_65   --atrous_rates=3   --atrous_rates=6   --atrous_rates=9   --output_stride=32   --decoder_output_stride=4   --train_crop_size=512   --train_crop_size=512   --train_batch_size=2   --training_number_of_steps=6000   --fine_tune_batch_norm=false   --tf_initial_checkpoint="./datasets/pascal_voc_seg/init_models/deeplabv3_pascal_train_aug/model.ckpt"  --train_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord" --dataset=original


    [vis.py command]



    python vis.py   --logtostderr   --vis_split="val"   --model_variant="xception_65"   --atrous_rates=6   --atrous_rates=12   --atrous_rates=18   --output_stride=16   --decoder_output_stride=4   --vis_crop_size=513   --vis_crop_size=513   --checkpoint_dir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"   --vis_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/vis"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord"   --max_number_of_iterations=1   --dataset=original   --max_resize_value=512   --min_resize_value=128


    Both ended without a problem but I confirmed pictures in datasets/pascal_voc_seg/exp/train_on_trainval_set/vis/raw_segmentation_results/, these are black out all. why?



    Is this because of train datas are bigger than 512x512?
    (Train datas size are so big about 15000x13500)



    [structure my directory]



    /tmp/models/research/deeplab  
    -README.md
    -common.py
    -datasets/
    --__init__.py
    --build_data.py
    --convert_cityscapes.sh
    --pascal_voc_seg/
    ---VOCdevkit/
    ----VOC2012/
    -----Annotations/
    -----ImageSets/
    -----JPEGImages/
    -----SegmentationClass/
    -----SegmentationObject/
    ---VOCtrainval_11-May-2012.tar
    ---exp/
    ----train_on_trainval_set/
    -----train/
    ------train.py
    -----vis/
    ------vis.py
    ---init_models/
    ----deeplabv3_pascal_train_aug/
    -----frozen_inference_graph.pb
    -----model.ckpt.data-00000-of-00001
    -----model.ckpt.index
    ---tfrecord/
    ----build_voc_2012.py
    --__pycache__
    --build_data.pyc
    --download_and_convert_ade20k.sh
    --remove_gt_colormap.py
    --build_ade20k_data.py
    --build_voc2012_data.py
    --download_and_convert_voc2012.sh
    --segmentation_dataset.py
    --build_cityscapes_data.py
    --build_voc2012_data.py.org
    -export_model.py
    -local_test.sh
    -model_test.py
    -utils/
    -__init__.py
    -common_test.py
    -deeplab_demo.ipynb
    -g3doc/
    -local_test_mobilenetv2.sh
    -train.py
    -vis.py
    -__pycache__
    -core/
    -eval.py
    -input_preprocess.py
    -model.py
    -train.py.bk









    share|improve this question

























      1












      1








      1








      I tried semanticsegmentation with deeplab v3+ but I got results all black out.



      I deleted the original file and put original datas in ImageSets/,JPEGImages/ and SegmentationClass/ corresponding to each.



      I prepared SegmentationClassRaw image according to rule of PASCAL VOC 2012 color.



      And I edited build_voc2012_data.py and segmentation_dataset.py



      [build_voc2012_data.py]



      FLAGS = tf.app.flags.FLAGS

      tf.app.flags.DEFINE_string('image_folder',
      './VOCdevkit/VOC2012/JPEGImages',
      'Folder containing images.')

      tf.app.flags.DEFINE_string(
      'semantic_segmentation_folder',
      './VOCdevkit/VOC2012/SegmentationClassRaw',
      'Folder containing semantic segmentation annotations.')

      tf.app.flags.DEFINE_string(
      'list_folder',
      './VOCdevkit/VOC2012/ImageSets/Segmentation',
      'Folder containing lists for training and validation')

      tf.app.flags.DEFINE_string(
      'output_dir',
      './tfrecord',
      'Path to save converted SSTable of TensorFlow examples.')


      _NUM_SHARDS = 4

      # add -->>
      FLAGS.image_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/JPEGImages"
      FLAGS.semantic_segmentation_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/SegmentationClassRaw"
      FLAGS.list_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation"
      FLAGS.image_format = "png"
      FLAGS.output_dir = "./pascal_voc_seg/tfrecord"
      # add --<<


      [segmentation_dataset.pu]



      # add kani 20181115 -->>
      _ORIGINAL_INFORMATION = DatasetDescriptor(
      splits_to_sizes={
      'train': 10,
      'trainval': 2,
      'val': 2,
      },
      num_classes=5,
      ignore_label=255,
      )
      #add kani 20181115 --<<

      # mod kani 20181115 -->>
      # _DATASETS_INFORMATION = {
      # 'cityscapes': _CITYSCAPES_INFORMATION,
      # 'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
      # 'ade20k': _ADE20K_INFORMATION,
      # }

      _DATASETS_INFORMATION = {
      'cityscapes': _CITYSCAPES_INFORMATION,
      'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
      'ade20k': _ADE20K_INFORMATION,
      'original': _ORIGINAL_INFORMATION,
      }
      # mod kani 20181115 --<<


      I run train.py and vis.py like this.



      [train.py command]



      python train.py   --logtostderr   --train_split=trainval   --model_variant=xception_65   --atrous_rates=3   --atrous_rates=6   --atrous_rates=9   --output_stride=32   --decoder_output_stride=4   --train_crop_size=512   --train_crop_size=512   --train_batch_size=2   --training_number_of_steps=6000   --fine_tune_batch_norm=false   --tf_initial_checkpoint="./datasets/pascal_voc_seg/init_models/deeplabv3_pascal_train_aug/model.ckpt"  --train_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord" --dataset=original


      [vis.py command]



      python vis.py   --logtostderr   --vis_split="val"   --model_variant="xception_65"   --atrous_rates=6   --atrous_rates=12   --atrous_rates=18   --output_stride=16   --decoder_output_stride=4   --vis_crop_size=513   --vis_crop_size=513   --checkpoint_dir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"   --vis_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/vis"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord"   --max_number_of_iterations=1   --dataset=original   --max_resize_value=512   --min_resize_value=128


      Both ended without a problem but I confirmed pictures in datasets/pascal_voc_seg/exp/train_on_trainval_set/vis/raw_segmentation_results/, these are black out all. why?



      Is this because of train datas are bigger than 512x512?
      (Train datas size are so big about 15000x13500)



      [structure my directory]



      /tmp/models/research/deeplab  
      -README.md
      -common.py
      -datasets/
      --__init__.py
      --build_data.py
      --convert_cityscapes.sh
      --pascal_voc_seg/
      ---VOCdevkit/
      ----VOC2012/
      -----Annotations/
      -----ImageSets/
      -----JPEGImages/
      -----SegmentationClass/
      -----SegmentationObject/
      ---VOCtrainval_11-May-2012.tar
      ---exp/
      ----train_on_trainval_set/
      -----train/
      ------train.py
      -----vis/
      ------vis.py
      ---init_models/
      ----deeplabv3_pascal_train_aug/
      -----frozen_inference_graph.pb
      -----model.ckpt.data-00000-of-00001
      -----model.ckpt.index
      ---tfrecord/
      ----build_voc_2012.py
      --__pycache__
      --build_data.pyc
      --download_and_convert_ade20k.sh
      --remove_gt_colormap.py
      --build_ade20k_data.py
      --build_voc2012_data.py
      --download_and_convert_voc2012.sh
      --segmentation_dataset.py
      --build_cityscapes_data.py
      --build_voc2012_data.py.org
      -export_model.py
      -local_test.sh
      -model_test.py
      -utils/
      -__init__.py
      -common_test.py
      -deeplab_demo.ipynb
      -g3doc/
      -local_test_mobilenetv2.sh
      -train.py
      -vis.py
      -__pycache__
      -core/
      -eval.py
      -input_preprocess.py
      -model.py
      -train.py.bk









      share|improve this question














      I tried semanticsegmentation with deeplab v3+ but I got results all black out.



      I deleted the original file and put original datas in ImageSets/,JPEGImages/ and SegmentationClass/ corresponding to each.



      I prepared SegmentationClassRaw image according to rule of PASCAL VOC 2012 color.



      And I edited build_voc2012_data.py and segmentation_dataset.py



      [build_voc2012_data.py]



      FLAGS = tf.app.flags.FLAGS

      tf.app.flags.DEFINE_string('image_folder',
      './VOCdevkit/VOC2012/JPEGImages',
      'Folder containing images.')

      tf.app.flags.DEFINE_string(
      'semantic_segmentation_folder',
      './VOCdevkit/VOC2012/SegmentationClassRaw',
      'Folder containing semantic segmentation annotations.')

      tf.app.flags.DEFINE_string(
      'list_folder',
      './VOCdevkit/VOC2012/ImageSets/Segmentation',
      'Folder containing lists for training and validation')

      tf.app.flags.DEFINE_string(
      'output_dir',
      './tfrecord',
      'Path to save converted SSTable of TensorFlow examples.')


      _NUM_SHARDS = 4

      # add -->>
      FLAGS.image_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/JPEGImages"
      FLAGS.semantic_segmentation_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/SegmentationClassRaw"
      FLAGS.list_folder = "./pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation"
      FLAGS.image_format = "png"
      FLAGS.output_dir = "./pascal_voc_seg/tfrecord"
      # add --<<


      [segmentation_dataset.pu]



      # add kani 20181115 -->>
      _ORIGINAL_INFORMATION = DatasetDescriptor(
      splits_to_sizes={
      'train': 10,
      'trainval': 2,
      'val': 2,
      },
      num_classes=5,
      ignore_label=255,
      )
      #add kani 20181115 --<<

      # mod kani 20181115 -->>
      # _DATASETS_INFORMATION = {
      # 'cityscapes': _CITYSCAPES_INFORMATION,
      # 'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
      # 'ade20k': _ADE20K_INFORMATION,
      # }

      _DATASETS_INFORMATION = {
      'cityscapes': _CITYSCAPES_INFORMATION,
      'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
      'ade20k': _ADE20K_INFORMATION,
      'original': _ORIGINAL_INFORMATION,
      }
      # mod kani 20181115 --<<


      I run train.py and vis.py like this.



      [train.py command]



      python train.py   --logtostderr   --train_split=trainval   --model_variant=xception_65   --atrous_rates=3   --atrous_rates=6   --atrous_rates=9   --output_stride=32   --decoder_output_stride=4   --train_crop_size=512   --train_crop_size=512   --train_batch_size=2   --training_number_of_steps=6000   --fine_tune_batch_norm=false   --tf_initial_checkpoint="./datasets/pascal_voc_seg/init_models/deeplabv3_pascal_train_aug/model.ckpt"  --train_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord" --dataset=original


      [vis.py command]



      python vis.py   --logtostderr   --vis_split="val"   --model_variant="xception_65"   --atrous_rates=6   --atrous_rates=12   --atrous_rates=18   --output_stride=16   --decoder_output_stride=4   --vis_crop_size=513   --vis_crop_size=513   --checkpoint_dir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"   --vis_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/vis"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord"   --max_number_of_iterations=1   --dataset=original   --max_resize_value=512   --min_resize_value=128


      Both ended without a problem but I confirmed pictures in datasets/pascal_voc_seg/exp/train_on_trainval_set/vis/raw_segmentation_results/, these are black out all. why?



      Is this because of train datas are bigger than 512x512?
      (Train datas size are so big about 15000x13500)



      [structure my directory]



      /tmp/models/research/deeplab  
      -README.md
      -common.py
      -datasets/
      --__init__.py
      --build_data.py
      --convert_cityscapes.sh
      --pascal_voc_seg/
      ---VOCdevkit/
      ----VOC2012/
      -----Annotations/
      -----ImageSets/
      -----JPEGImages/
      -----SegmentationClass/
      -----SegmentationObject/
      ---VOCtrainval_11-May-2012.tar
      ---exp/
      ----train_on_trainval_set/
      -----train/
      ------train.py
      -----vis/
      ------vis.py
      ---init_models/
      ----deeplabv3_pascal_train_aug/
      -----frozen_inference_graph.pb
      -----model.ckpt.data-00000-of-00001
      -----model.ckpt.index
      ---tfrecord/
      ----build_voc_2012.py
      --__pycache__
      --build_data.pyc
      --download_and_convert_ade20k.sh
      --remove_gt_colormap.py
      --build_ade20k_data.py
      --build_voc2012_data.py
      --download_and_convert_voc2012.sh
      --segmentation_dataset.py
      --build_cityscapes_data.py
      --build_voc2012_data.py.org
      -export_model.py
      -local_test.sh
      -model_test.py
      -utils/
      -__init__.py
      -common_test.py
      -deeplab_demo.ipynb
      -g3doc/
      -local_test_mobilenetv2.sh
      -train.py
      -vis.py
      -__pycache__
      -core/
      -eval.py
      -input_preprocess.py
      -model.py
      -train.py.bk






      tensorflow deep-learning segmentation-fault semantic-segmentation deeplab






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 21 '18 at 4:11









      y_ kaniy_ kani

      61




      61
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53405145%2fwhy-do-all-images-resulting-by-deeplabv-3-become-black-only%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53405145%2fwhy-do-all-images-resulting-by-deeplabv-3-become-black-only%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          SQL update select statement

          WPF add header to Image with URL pettitions [duplicate]