Optimum of coordinate-wise convex function
$begingroup$
Let $f colon mathbb{R}^n to mathbb{R}$ be a function that is convex in each coordinate:
$$
forall i in {1, dots, n}. forall x_1. dots forall x_{i-1}, forall x_{i+1}dots forall x_n. f(x_1,dots,x_{i-1},cdot,x_{i+1},dots, x_n) text{ is convex}
$$
Can $f$ have a local optimum that is not also a global optimum?
I already know that $f$ is not necessarily convex (consider, e.g., $f(x,y)=x cdot y$). Therefore, I suspect that in general, $f$ may have local optimas. However, I could not find a counterexample so far ($x cdot y$ has no optimum).
optimization convex-analysis convex-optimization maxima-minima
$endgroup$
add a comment |
$begingroup$
Let $f colon mathbb{R}^n to mathbb{R}$ be a function that is convex in each coordinate:
$$
forall i in {1, dots, n}. forall x_1. dots forall x_{i-1}, forall x_{i+1}dots forall x_n. f(x_1,dots,x_{i-1},cdot,x_{i+1},dots, x_n) text{ is convex}
$$
Can $f$ have a local optimum that is not also a global optimum?
I already know that $f$ is not necessarily convex (consider, e.g., $f(x,y)=x cdot y$). Therefore, I suspect that in general, $f$ may have local optimas. However, I could not find a counterexample so far ($x cdot y$ has no optimum).
optimization convex-analysis convex-optimization maxima-minima
$endgroup$
add a comment |
$begingroup$
Let $f colon mathbb{R}^n to mathbb{R}$ be a function that is convex in each coordinate:
$$
forall i in {1, dots, n}. forall x_1. dots forall x_{i-1}, forall x_{i+1}dots forall x_n. f(x_1,dots,x_{i-1},cdot,x_{i+1},dots, x_n) text{ is convex}
$$
Can $f$ have a local optimum that is not also a global optimum?
I already know that $f$ is not necessarily convex (consider, e.g., $f(x,y)=x cdot y$). Therefore, I suspect that in general, $f$ may have local optimas. However, I could not find a counterexample so far ($x cdot y$ has no optimum).
optimization convex-analysis convex-optimization maxima-minima
$endgroup$
Let $f colon mathbb{R}^n to mathbb{R}$ be a function that is convex in each coordinate:
$$
forall i in {1, dots, n}. forall x_1. dots forall x_{i-1}, forall x_{i+1}dots forall x_n. f(x_1,dots,x_{i-1},cdot,x_{i+1},dots, x_n) text{ is convex}
$$
Can $f$ have a local optimum that is not also a global optimum?
I already know that $f$ is not necessarily convex (consider, e.g., $f(x,y)=x cdot y$). Therefore, I suspect that in general, $f$ may have local optimas. However, I could not find a counterexample so far ($x cdot y$ has no optimum).
optimization convex-analysis convex-optimization maxima-minima
optimization convex-analysis convex-optimization maxima-minima
asked Jan 10 at 10:41
PeterPeter
356114
356114
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The function
$$
f(x,y)
=
x^2 , y^2 + 20 , x , y + x^2 + y^2 + x
$$
has two local minimizers (near $(-3,3)$ and $(3,-3)$) with different function values. Only one of these minimizers is the global minimizer.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068486%2foptimum-of-coordinate-wise-convex-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The function
$$
f(x,y)
=
x^2 , y^2 + 20 , x , y + x^2 + y^2 + x
$$
has two local minimizers (near $(-3,3)$ and $(3,-3)$) with different function values. Only one of these minimizers is the global minimizer.
$endgroup$
add a comment |
$begingroup$
The function
$$
f(x,y)
=
x^2 , y^2 + 20 , x , y + x^2 + y^2 + x
$$
has two local minimizers (near $(-3,3)$ and $(3,-3)$) with different function values. Only one of these minimizers is the global minimizer.
$endgroup$
add a comment |
$begingroup$
The function
$$
f(x,y)
=
x^2 , y^2 + 20 , x , y + x^2 + y^2 + x
$$
has two local minimizers (near $(-3,3)$ and $(3,-3)$) with different function values. Only one of these minimizers is the global minimizer.
$endgroup$
The function
$$
f(x,y)
=
x^2 , y^2 + 20 , x , y + x^2 + y^2 + x
$$
has two local minimizers (near $(-3,3)$ and $(3,-3)$) with different function values. Only one of these minimizers is the global minimizer.
answered Jan 11 at 8:36
gerwgerw
19.4k11334
19.4k11334
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068486%2foptimum-of-coordinate-wise-convex-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown