Integrate $xoperatorname{erf}^{,3}(x),e^{-x^2},dx$
$begingroup$
Looking for a way to perform this integral related to the error function.
I am thinking an answer in closed form cannot be done, but hoping I missed something.
$$
int xoperatorname{erf}^{,3}(x),e^{-x^2}dx
$$
Edit:
Yuriy : It comes from calculations related to linear moments.
Ives : Thanks, following integration by parts, we have
$int u,dv = uv-int v,du$
$u=x,operatorname{erf}(x)$
$du=operatorname{erf}(x)+frac{2x}{sqrt{pi}}e^{-x^2}dx$
$v=frac{pi}{6}operatorname{erf}^3(x)$
$dv=operatorname{erf}^2(x),e^{-x^2}dx$
$int xoperatorname{erf}^{,3}(x),e^{-x^2},dx = frac{sqrt{pi}}{6},x,e^{-x^2}operatorname{erf}^{,3}(x)-frac{sqrt{pi}}{6},int operatorname{erf}^3(x)[operatorname{erf}(x)+frac{2}{sqrt{pi}}xe^{-x^2}]dx$
$=frac{sqrt{pi}}{4}xoperatorname{erf}^4(x)-frac{sqrt{pi}}{4}int operatorname{erf}^{,4}(x)dx$
Then the challenge becomes how to solve:
$$
int operatorname{erf}^{,4}(x),dx
$$
Edit 2:
Able to simplify(?) a bit more:
$int operatorname{erf}^{,4}(x),dx = xoperatorname{erf}^{,4}(x)+frac{4}{sqrt{pi}}e^{-x^2}operatorname{erf}^{,3}(x)-frac{24}{pi}int operatorname{erf}^{,2}(x)e^{-2x^2}dx$
Now the challenge becomes how to solve:
$$
int operatorname{erf}^{,2}(x)e^{-2x^2}dx
$$
calculus integration indefinite-integrals error-function
$endgroup$
add a comment |
$begingroup$
Looking for a way to perform this integral related to the error function.
I am thinking an answer in closed form cannot be done, but hoping I missed something.
$$
int xoperatorname{erf}^{,3}(x),e^{-x^2}dx
$$
Edit:
Yuriy : It comes from calculations related to linear moments.
Ives : Thanks, following integration by parts, we have
$int u,dv = uv-int v,du$
$u=x,operatorname{erf}(x)$
$du=operatorname{erf}(x)+frac{2x}{sqrt{pi}}e^{-x^2}dx$
$v=frac{pi}{6}operatorname{erf}^3(x)$
$dv=operatorname{erf}^2(x),e^{-x^2}dx$
$int xoperatorname{erf}^{,3}(x),e^{-x^2},dx = frac{sqrt{pi}}{6},x,e^{-x^2}operatorname{erf}^{,3}(x)-frac{sqrt{pi}}{6},int operatorname{erf}^3(x)[operatorname{erf}(x)+frac{2}{sqrt{pi}}xe^{-x^2}]dx$
$=frac{sqrt{pi}}{4}xoperatorname{erf}^4(x)-frac{sqrt{pi}}{4}int operatorname{erf}^{,4}(x)dx$
Then the challenge becomes how to solve:
$$
int operatorname{erf}^{,4}(x),dx
$$
Edit 2:
Able to simplify(?) a bit more:
$int operatorname{erf}^{,4}(x),dx = xoperatorname{erf}^{,4}(x)+frac{4}{sqrt{pi}}e^{-x^2}operatorname{erf}^{,3}(x)-frac{24}{pi}int operatorname{erf}^{,2}(x)e^{-2x^2}dx$
Now the challenge becomes how to solve:
$$
int operatorname{erf}^{,2}(x)e^{-2x^2}dx
$$
calculus integration indefinite-integrals error-function
$endgroup$
1
$begingroup$
Integration by parts can reduce the integrand to $text{erf }^4(x)$, indeed not manageable.
$endgroup$
– Yves Daoust
Jan 10 at 11:22
$begingroup$
Where did you find this monster?
$endgroup$
– Yuriy S
Jan 10 at 11:30
$begingroup$
Let $u=erf(x)$ and all is good.
$endgroup$
– B. Goddard
Jan 10 at 12:06
$begingroup$
@B.Goddard: can you elaborate ?
$endgroup$
– Yves Daoust
Jan 10 at 12:40
$begingroup$
If that $x$ wasn't there it'd be a lot easier.
$endgroup$
– Michael Seifert
Jan 10 at 21:13
add a comment |
$begingroup$
Looking for a way to perform this integral related to the error function.
I am thinking an answer in closed form cannot be done, but hoping I missed something.
$$
int xoperatorname{erf}^{,3}(x),e^{-x^2}dx
$$
Edit:
Yuriy : It comes from calculations related to linear moments.
Ives : Thanks, following integration by parts, we have
$int u,dv = uv-int v,du$
$u=x,operatorname{erf}(x)$
$du=operatorname{erf}(x)+frac{2x}{sqrt{pi}}e^{-x^2}dx$
$v=frac{pi}{6}operatorname{erf}^3(x)$
$dv=operatorname{erf}^2(x),e^{-x^2}dx$
$int xoperatorname{erf}^{,3}(x),e^{-x^2},dx = frac{sqrt{pi}}{6},x,e^{-x^2}operatorname{erf}^{,3}(x)-frac{sqrt{pi}}{6},int operatorname{erf}^3(x)[operatorname{erf}(x)+frac{2}{sqrt{pi}}xe^{-x^2}]dx$
$=frac{sqrt{pi}}{4}xoperatorname{erf}^4(x)-frac{sqrt{pi}}{4}int operatorname{erf}^{,4}(x)dx$
Then the challenge becomes how to solve:
$$
int operatorname{erf}^{,4}(x),dx
$$
Edit 2:
Able to simplify(?) a bit more:
$int operatorname{erf}^{,4}(x),dx = xoperatorname{erf}^{,4}(x)+frac{4}{sqrt{pi}}e^{-x^2}operatorname{erf}^{,3}(x)-frac{24}{pi}int operatorname{erf}^{,2}(x)e^{-2x^2}dx$
Now the challenge becomes how to solve:
$$
int operatorname{erf}^{,2}(x)e^{-2x^2}dx
$$
calculus integration indefinite-integrals error-function
$endgroup$
Looking for a way to perform this integral related to the error function.
I am thinking an answer in closed form cannot be done, but hoping I missed something.
$$
int xoperatorname{erf}^{,3}(x),e^{-x^2}dx
$$
Edit:
Yuriy : It comes from calculations related to linear moments.
Ives : Thanks, following integration by parts, we have
$int u,dv = uv-int v,du$
$u=x,operatorname{erf}(x)$
$du=operatorname{erf}(x)+frac{2x}{sqrt{pi}}e^{-x^2}dx$
$v=frac{pi}{6}operatorname{erf}^3(x)$
$dv=operatorname{erf}^2(x),e^{-x^2}dx$
$int xoperatorname{erf}^{,3}(x),e^{-x^2},dx = frac{sqrt{pi}}{6},x,e^{-x^2}operatorname{erf}^{,3}(x)-frac{sqrt{pi}}{6},int operatorname{erf}^3(x)[operatorname{erf}(x)+frac{2}{sqrt{pi}}xe^{-x^2}]dx$
$=frac{sqrt{pi}}{4}xoperatorname{erf}^4(x)-frac{sqrt{pi}}{4}int operatorname{erf}^{,4}(x)dx$
Then the challenge becomes how to solve:
$$
int operatorname{erf}^{,4}(x),dx
$$
Edit 2:
Able to simplify(?) a bit more:
$int operatorname{erf}^{,4}(x),dx = xoperatorname{erf}^{,4}(x)+frac{4}{sqrt{pi}}e^{-x^2}operatorname{erf}^{,3}(x)-frac{24}{pi}int operatorname{erf}^{,2}(x)e^{-2x^2}dx$
Now the challenge becomes how to solve:
$$
int operatorname{erf}^{,2}(x)e^{-2x^2}dx
$$
calculus integration indefinite-integrals error-function
calculus integration indefinite-integrals error-function
edited Jan 10 at 21:51
tgm
asked Jan 10 at 7:39
tgmtgm
61
61
1
$begingroup$
Integration by parts can reduce the integrand to $text{erf }^4(x)$, indeed not manageable.
$endgroup$
– Yves Daoust
Jan 10 at 11:22
$begingroup$
Where did you find this monster?
$endgroup$
– Yuriy S
Jan 10 at 11:30
$begingroup$
Let $u=erf(x)$ and all is good.
$endgroup$
– B. Goddard
Jan 10 at 12:06
$begingroup$
@B.Goddard: can you elaborate ?
$endgroup$
– Yves Daoust
Jan 10 at 12:40
$begingroup$
If that $x$ wasn't there it'd be a lot easier.
$endgroup$
– Michael Seifert
Jan 10 at 21:13
add a comment |
1
$begingroup$
Integration by parts can reduce the integrand to $text{erf }^4(x)$, indeed not manageable.
$endgroup$
– Yves Daoust
Jan 10 at 11:22
$begingroup$
Where did you find this monster?
$endgroup$
– Yuriy S
Jan 10 at 11:30
$begingroup$
Let $u=erf(x)$ and all is good.
$endgroup$
– B. Goddard
Jan 10 at 12:06
$begingroup$
@B.Goddard: can you elaborate ?
$endgroup$
– Yves Daoust
Jan 10 at 12:40
$begingroup$
If that $x$ wasn't there it'd be a lot easier.
$endgroup$
– Michael Seifert
Jan 10 at 21:13
1
1
$begingroup$
Integration by parts can reduce the integrand to $text{erf }^4(x)$, indeed not manageable.
$endgroup$
– Yves Daoust
Jan 10 at 11:22
$begingroup$
Integration by parts can reduce the integrand to $text{erf }^4(x)$, indeed not manageable.
$endgroup$
– Yves Daoust
Jan 10 at 11:22
$begingroup$
Where did you find this monster?
$endgroup$
– Yuriy S
Jan 10 at 11:30
$begingroup$
Where did you find this monster?
$endgroup$
– Yuriy S
Jan 10 at 11:30
$begingroup$
Let $u=erf(x)$ and all is good.
$endgroup$
– B. Goddard
Jan 10 at 12:06
$begingroup$
Let $u=erf(x)$ and all is good.
$endgroup$
– B. Goddard
Jan 10 at 12:06
$begingroup$
@B.Goddard: can you elaborate ?
$endgroup$
– Yves Daoust
Jan 10 at 12:40
$begingroup$
@B.Goddard: can you elaborate ?
$endgroup$
– Yves Daoust
Jan 10 at 12:40
$begingroup$
If that $x$ wasn't there it'd be a lot easier.
$endgroup$
– Michael Seifert
Jan 10 at 21:13
$begingroup$
If that $x$ wasn't there it'd be a lot easier.
$endgroup$
– Michael Seifert
Jan 10 at 21:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068357%2fintegrate-x-operatornameerf-3x-e-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068357%2fintegrate-x-operatornameerf-3x-e-x2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Integration by parts can reduce the integrand to $text{erf }^4(x)$, indeed not manageable.
$endgroup$
– Yves Daoust
Jan 10 at 11:22
$begingroup$
Where did you find this monster?
$endgroup$
– Yuriy S
Jan 10 at 11:30
$begingroup$
Let $u=erf(x)$ and all is good.
$endgroup$
– B. Goddard
Jan 10 at 12:06
$begingroup$
@B.Goddard: can you elaborate ?
$endgroup$
– Yves Daoust
Jan 10 at 12:40
$begingroup$
If that $x$ wasn't there it'd be a lot easier.
$endgroup$
– Michael Seifert
Jan 10 at 21:13