time complexity of a function to find minimum number of lines to cover all zeros in assignment problem
$begingroup$
I am working on assignment problem by Hungarian method in O(n^3) polynomial time. To draw minimum number of lines to cover all zeros, i have got this function which is working really good. But can anyone please tell me the time complexity of the function. That means if it is O(n^3) or O(n^4) and why? I am really confused.
void step_four()
{
int row;
int col;
bool done;
done = false;
while (!done)
{
find_a_zero(&row,&col);
if (row == -1)
{
done = true;
step = 6;
}
else
{
mask_matrix[row][col] = 2;
if (star_in_row(row))
{
find_star_in_row(row, &col);
RowCover[row] = 1;
ColCover[col] = 0;
}
else
{
done = true;
step = 5;
path_row_0 = row;
path_col_0 = col;
}
}
}
}
void find_a_zero(int *row, int *col)
{
int r=0;
int c;
bool done;
*row = -1;
*col = -1;
done = false;
while (!done)
{ c = 0;
while (true)
{
if (a[r][c] == 0 && RowCover[r] == 0 && ColCover[c] == 0)
{
*row = r;
*col = c;
done = true;
}
c += 1;
if (c >= max || done)
{
break;
}
}
r += 1;
if (r >= max)
done = true;
}
}
computational-complexity
$endgroup$
add a comment |
$begingroup$
I am working on assignment problem by Hungarian method in O(n^3) polynomial time. To draw minimum number of lines to cover all zeros, i have got this function which is working really good. But can anyone please tell me the time complexity of the function. That means if it is O(n^3) or O(n^4) and why? I am really confused.
void step_four()
{
int row;
int col;
bool done;
done = false;
while (!done)
{
find_a_zero(&row,&col);
if (row == -1)
{
done = true;
step = 6;
}
else
{
mask_matrix[row][col] = 2;
if (star_in_row(row))
{
find_star_in_row(row, &col);
RowCover[row] = 1;
ColCover[col] = 0;
}
else
{
done = true;
step = 5;
path_row_0 = row;
path_col_0 = col;
}
}
}
}
void find_a_zero(int *row, int *col)
{
int r=0;
int c;
bool done;
*row = -1;
*col = -1;
done = false;
while (!done)
{ c = 0;
while (true)
{
if (a[r][c] == 0 && RowCover[r] == 0 && ColCover[c] == 0)
{
*row = r;
*col = c;
done = true;
}
c += 1;
if (c >= max || done)
{
break;
}
}
r += 1;
if (r >= max)
done = true;
}
}
computational-complexity
$endgroup$
add a comment |
$begingroup$
I am working on assignment problem by Hungarian method in O(n^3) polynomial time. To draw minimum number of lines to cover all zeros, i have got this function which is working really good. But can anyone please tell me the time complexity of the function. That means if it is O(n^3) or O(n^4) and why? I am really confused.
void step_four()
{
int row;
int col;
bool done;
done = false;
while (!done)
{
find_a_zero(&row,&col);
if (row == -1)
{
done = true;
step = 6;
}
else
{
mask_matrix[row][col] = 2;
if (star_in_row(row))
{
find_star_in_row(row, &col);
RowCover[row] = 1;
ColCover[col] = 0;
}
else
{
done = true;
step = 5;
path_row_0 = row;
path_col_0 = col;
}
}
}
}
void find_a_zero(int *row, int *col)
{
int r=0;
int c;
bool done;
*row = -1;
*col = -1;
done = false;
while (!done)
{ c = 0;
while (true)
{
if (a[r][c] == 0 && RowCover[r] == 0 && ColCover[c] == 0)
{
*row = r;
*col = c;
done = true;
}
c += 1;
if (c >= max || done)
{
break;
}
}
r += 1;
if (r >= max)
done = true;
}
}
computational-complexity
$endgroup$
I am working on assignment problem by Hungarian method in O(n^3) polynomial time. To draw minimum number of lines to cover all zeros, i have got this function which is working really good. But can anyone please tell me the time complexity of the function. That means if it is O(n^3) or O(n^4) and why? I am really confused.
void step_four()
{
int row;
int col;
bool done;
done = false;
while (!done)
{
find_a_zero(&row,&col);
if (row == -1)
{
done = true;
step = 6;
}
else
{
mask_matrix[row][col] = 2;
if (star_in_row(row))
{
find_star_in_row(row, &col);
RowCover[row] = 1;
ColCover[col] = 0;
}
else
{
done = true;
step = 5;
path_row_0 = row;
path_col_0 = col;
}
}
}
}
void find_a_zero(int *row, int *col)
{
int r=0;
int c;
bool done;
*row = -1;
*col = -1;
done = false;
while (!done)
{ c = 0;
while (true)
{
if (a[r][c] == 0 && RowCover[r] == 0 && ColCover[c] == 0)
{
*row = r;
*col = c;
done = true;
}
c += 1;
if (c >= max || done)
{
break;
}
}
r += 1;
if (r >= max)
done = true;
}
}
computational-complexity
computational-complexity
edited Jan 10 at 11:12
Aaditi
asked Jan 10 at 10:56
AaditiAaditi
12
12
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068494%2ftime-complexity-of-a-function-to-find-minimum-number-of-lines-to-cover-all-zeros%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068494%2ftime-complexity-of-a-function-to-find-minimum-number-of-lines-to-cover-all-zeros%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown