Is histogram “function” linear?












0












$begingroup$


I was ask to prove/disprove if for two given images $f_1(x,y)$ and $f_2(x,y)$ the histogram of $f_1(x,y)-f_2(x,y)$ and $h_1-h_2$ are equal, where $h_i$ is the histogram of image i.



Intuitively it seems to be correct, as if we look at the images as matrices, the histogram is a function that take the matrix values and count the number of repetitions ("losing" the indices of each value)



But is there a proper mathematically proof?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I was ask to prove/disprove if for two given images $f_1(x,y)$ and $f_2(x,y)$ the histogram of $f_1(x,y)-f_2(x,y)$ and $h_1-h_2$ are equal, where $h_i$ is the histogram of image i.



    Intuitively it seems to be correct, as if we look at the images as matrices, the histogram is a function that take the matrix values and count the number of repetitions ("losing" the indices of each value)



    But is there a proper mathematically proof?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I was ask to prove/disprove if for two given images $f_1(x,y)$ and $f_2(x,y)$ the histogram of $f_1(x,y)-f_2(x,y)$ and $h_1-h_2$ are equal, where $h_i$ is the histogram of image i.



      Intuitively it seems to be correct, as if we look at the images as matrices, the histogram is a function that take the matrix values and count the number of repetitions ("losing" the indices of each value)



      But is there a proper mathematically proof?










      share|cite|improve this question











      $endgroup$




      I was ask to prove/disprove if for two given images $f_1(x,y)$ and $f_2(x,y)$ the histogram of $f_1(x,y)-f_2(x,y)$ and $h_1-h_2$ are equal, where $h_i$ is the histogram of image i.



      Intuitively it seems to be correct, as if we look at the images as matrices, the histogram is a function that take the matrix values and count the number of repetitions ("losing" the indices of each value)



      But is there a proper mathematically proof?







      statistics image-processing






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 17 at 20:10







      gbox

















      asked Jan 17 at 19:56









      gboxgbox

      5,45562262




      5,45562262






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Consider one-dimensional images
          $$f_1=[0,0,0,1]$$
          $$f_2=[0,1,0,0]$$
          Then we can say that
          $$h_1=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
          $$h_2=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
          $$h_1-h_2=begin{bmatrix}(-1,0)\(0,0)\(1,0)end{bmatrix}$$
          $$f_1-f_2=[0,-1,0,1]$$
          $$h_{1-2}=begin{bmatrix}(-1,1)\(0,2)\(1,1)end{bmatrix}$$



          In general, if two images are different from each other but have the same histogram, then the histogram of the difference of the images will not be equal to the difference of the histograms.



          Have I misunderstood something? I don't know if there's even a rigorous idea of "histogram subtraction".






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            No, the difference of histograms of images is not equal to the histogram of difference of images.



            Consider the following counter example:





            • $f_1$ image of dimensions $1 times 1$ with $f_1(0,0) = 0$,


            • $f_2$ image of dimensions $1 times 1$ with $f_2(0,0) = 1$.


            Define $f_d(0,0) = f_1(0,0) - f_2(0,0) = 0 - 1 = -1$. Now take the histograms:




            • $h[f_1](x) = begin{cases} 0 & text{for } x = 1,\
              1 & text{for } x = 0,\
              0 & text{for } x = -1,
              end{cases}$

            • $h[f_2](x) = begin{cases} 1 & text{for } x = 1,\
              0 & text{for } x = 0,\
              0 & text{for } x = -1,
              end{cases}$

            • $h[f_1 - f_2](x) = begin{cases} 0 & text{for } x = 1,\
              0 & text{for } x = 0,\
              1 & text{for } x = -1.
              end{cases}$


            The histogram difference results to be




            • $(h[f_1] - h[f_2])(x) = begin{cases} -1 & text{for } x = 1,\
              1 & text{for } x = 0,\
              0 & text{for } x = -1.
              end{cases}$


            Hence we deduce that the histogram operator is not linear:
            $$ h[f_1 - f_2] neq h[f_1] - h[f_2].$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077434%2fis-histogram-function-linear%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Consider one-dimensional images
              $$f_1=[0,0,0,1]$$
              $$f_2=[0,1,0,0]$$
              Then we can say that
              $$h_1=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
              $$h_2=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
              $$h_1-h_2=begin{bmatrix}(-1,0)\(0,0)\(1,0)end{bmatrix}$$
              $$f_1-f_2=[0,-1,0,1]$$
              $$h_{1-2}=begin{bmatrix}(-1,1)\(0,2)\(1,1)end{bmatrix}$$



              In general, if two images are different from each other but have the same histogram, then the histogram of the difference of the images will not be equal to the difference of the histograms.



              Have I misunderstood something? I don't know if there's even a rigorous idea of "histogram subtraction".






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Consider one-dimensional images
                $$f_1=[0,0,0,1]$$
                $$f_2=[0,1,0,0]$$
                Then we can say that
                $$h_1=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
                $$h_2=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
                $$h_1-h_2=begin{bmatrix}(-1,0)\(0,0)\(1,0)end{bmatrix}$$
                $$f_1-f_2=[0,-1,0,1]$$
                $$h_{1-2}=begin{bmatrix}(-1,1)\(0,2)\(1,1)end{bmatrix}$$



                In general, if two images are different from each other but have the same histogram, then the histogram of the difference of the images will not be equal to the difference of the histograms.



                Have I misunderstood something? I don't know if there's even a rigorous idea of "histogram subtraction".






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Consider one-dimensional images
                  $$f_1=[0,0,0,1]$$
                  $$f_2=[0,1,0,0]$$
                  Then we can say that
                  $$h_1=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
                  $$h_2=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
                  $$h_1-h_2=begin{bmatrix}(-1,0)\(0,0)\(1,0)end{bmatrix}$$
                  $$f_1-f_2=[0,-1,0,1]$$
                  $$h_{1-2}=begin{bmatrix}(-1,1)\(0,2)\(1,1)end{bmatrix}$$



                  In general, if two images are different from each other but have the same histogram, then the histogram of the difference of the images will not be equal to the difference of the histograms.



                  Have I misunderstood something? I don't know if there's even a rigorous idea of "histogram subtraction".






                  share|cite|improve this answer









                  $endgroup$



                  Consider one-dimensional images
                  $$f_1=[0,0,0,1]$$
                  $$f_2=[0,1,0,0]$$
                  Then we can say that
                  $$h_1=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
                  $$h_2=begin{bmatrix}(-1,0)\(0,3)\(1,1)end{bmatrix}$$
                  $$h_1-h_2=begin{bmatrix}(-1,0)\(0,0)\(1,0)end{bmatrix}$$
                  $$f_1-f_2=[0,-1,0,1]$$
                  $$h_{1-2}=begin{bmatrix}(-1,1)\(0,2)\(1,1)end{bmatrix}$$



                  In general, if two images are different from each other but have the same histogram, then the histogram of the difference of the images will not be equal to the difference of the histograms.



                  Have I misunderstood something? I don't know if there's even a rigorous idea of "histogram subtraction".







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 17 at 20:18









                  ShapeOfMatterShapeOfMatter

                  1794




                  1794























                      0












                      $begingroup$

                      No, the difference of histograms of images is not equal to the histogram of difference of images.



                      Consider the following counter example:





                      • $f_1$ image of dimensions $1 times 1$ with $f_1(0,0) = 0$,


                      • $f_2$ image of dimensions $1 times 1$ with $f_2(0,0) = 1$.


                      Define $f_d(0,0) = f_1(0,0) - f_2(0,0) = 0 - 1 = -1$. Now take the histograms:




                      • $h[f_1](x) = begin{cases} 0 & text{for } x = 1,\
                        1 & text{for } x = 0,\
                        0 & text{for } x = -1,
                        end{cases}$

                      • $h[f_2](x) = begin{cases} 1 & text{for } x = 1,\
                        0 & text{for } x = 0,\
                        0 & text{for } x = -1,
                        end{cases}$

                      • $h[f_1 - f_2](x) = begin{cases} 0 & text{for } x = 1,\
                        0 & text{for } x = 0,\
                        1 & text{for } x = -1.
                        end{cases}$


                      The histogram difference results to be




                      • $(h[f_1] - h[f_2])(x) = begin{cases} -1 & text{for } x = 1,\
                        1 & text{for } x = 0,\
                        0 & text{for } x = -1.
                        end{cases}$


                      Hence we deduce that the histogram operator is not linear:
                      $$ h[f_1 - f_2] neq h[f_1] - h[f_2].$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        No, the difference of histograms of images is not equal to the histogram of difference of images.



                        Consider the following counter example:





                        • $f_1$ image of dimensions $1 times 1$ with $f_1(0,0) = 0$,


                        • $f_2$ image of dimensions $1 times 1$ with $f_2(0,0) = 1$.


                        Define $f_d(0,0) = f_1(0,0) - f_2(0,0) = 0 - 1 = -1$. Now take the histograms:




                        • $h[f_1](x) = begin{cases} 0 & text{for } x = 1,\
                          1 & text{for } x = 0,\
                          0 & text{for } x = -1,
                          end{cases}$

                        • $h[f_2](x) = begin{cases} 1 & text{for } x = 1,\
                          0 & text{for } x = 0,\
                          0 & text{for } x = -1,
                          end{cases}$

                        • $h[f_1 - f_2](x) = begin{cases} 0 & text{for } x = 1,\
                          0 & text{for } x = 0,\
                          1 & text{for } x = -1.
                          end{cases}$


                        The histogram difference results to be




                        • $(h[f_1] - h[f_2])(x) = begin{cases} -1 & text{for } x = 1,\
                          1 & text{for } x = 0,\
                          0 & text{for } x = -1.
                          end{cases}$


                        Hence we deduce that the histogram operator is not linear:
                        $$ h[f_1 - f_2] neq h[f_1] - h[f_2].$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          No, the difference of histograms of images is not equal to the histogram of difference of images.



                          Consider the following counter example:





                          • $f_1$ image of dimensions $1 times 1$ with $f_1(0,0) = 0$,


                          • $f_2$ image of dimensions $1 times 1$ with $f_2(0,0) = 1$.


                          Define $f_d(0,0) = f_1(0,0) - f_2(0,0) = 0 - 1 = -1$. Now take the histograms:




                          • $h[f_1](x) = begin{cases} 0 & text{for } x = 1,\
                            1 & text{for } x = 0,\
                            0 & text{for } x = -1,
                            end{cases}$

                          • $h[f_2](x) = begin{cases} 1 & text{for } x = 1,\
                            0 & text{for } x = 0,\
                            0 & text{for } x = -1,
                            end{cases}$

                          • $h[f_1 - f_2](x) = begin{cases} 0 & text{for } x = 1,\
                            0 & text{for } x = 0,\
                            1 & text{for } x = -1.
                            end{cases}$


                          The histogram difference results to be




                          • $(h[f_1] - h[f_2])(x) = begin{cases} -1 & text{for } x = 1,\
                            1 & text{for } x = 0,\
                            0 & text{for } x = -1.
                            end{cases}$


                          Hence we deduce that the histogram operator is not linear:
                          $$ h[f_1 - f_2] neq h[f_1] - h[f_2].$$






                          share|cite|improve this answer









                          $endgroup$



                          No, the difference of histograms of images is not equal to the histogram of difference of images.



                          Consider the following counter example:





                          • $f_1$ image of dimensions $1 times 1$ with $f_1(0,0) = 0$,


                          • $f_2$ image of dimensions $1 times 1$ with $f_2(0,0) = 1$.


                          Define $f_d(0,0) = f_1(0,0) - f_2(0,0) = 0 - 1 = -1$. Now take the histograms:




                          • $h[f_1](x) = begin{cases} 0 & text{for } x = 1,\
                            1 & text{for } x = 0,\
                            0 & text{for } x = -1,
                            end{cases}$

                          • $h[f_2](x) = begin{cases} 1 & text{for } x = 1,\
                            0 & text{for } x = 0,\
                            0 & text{for } x = -1,
                            end{cases}$

                          • $h[f_1 - f_2](x) = begin{cases} 0 & text{for } x = 1,\
                            0 & text{for } x = 0,\
                            1 & text{for } x = -1.
                            end{cases}$


                          The histogram difference results to be




                          • $(h[f_1] - h[f_2])(x) = begin{cases} -1 & text{for } x = 1,\
                            1 & text{for } x = 0,\
                            0 & text{for } x = -1.
                            end{cases}$


                          Hence we deduce that the histogram operator is not linear:
                          $$ h[f_1 - f_2] neq h[f_1] - h[f_2].$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Feb 15 at 21:26









                          simonetsimonet

                          1668




                          1668






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077434%2fis-histogram-function-linear%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              How to fix TextFormField cause rebuild widget in Flutter