Is this sequence of functions uniformly convergent?
$begingroup$
Let $a,b in mathbb{R}$ with $0<a<b$. For each $nin mathbb{N}$, let $f_n:[a,b]longrightarrow mathbb{R}$ be defined by $f_n(x):=left(1+frac{ln x}{n}right)^n$.
Then it is easy to see that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ pointwise, where $f(x)=x$.
Is it true that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ uniformly on $[a,b]$ ?
analysis
$endgroup$
add a comment |
$begingroup$
Let $a,b in mathbb{R}$ with $0<a<b$. For each $nin mathbb{N}$, let $f_n:[a,b]longrightarrow mathbb{R}$ be defined by $f_n(x):=left(1+frac{ln x}{n}right)^n$.
Then it is easy to see that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ pointwise, where $f(x)=x$.
Is it true that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ uniformly on $[a,b]$ ?
analysis
$endgroup$
1
$begingroup$
For a>1, you can use Dini's theorem.
$endgroup$
– J.F
Jan 18 at 20:30
$begingroup$
@G.F: If $a<1$, then it seems possible to handle the intervals $[a,1]$ and $[1,b]$ separately?
$endgroup$
– W-t-P
Jan 18 at 20:38
add a comment |
$begingroup$
Let $a,b in mathbb{R}$ with $0<a<b$. For each $nin mathbb{N}$, let $f_n:[a,b]longrightarrow mathbb{R}$ be defined by $f_n(x):=left(1+frac{ln x}{n}right)^n$.
Then it is easy to see that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ pointwise, where $f(x)=x$.
Is it true that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ uniformly on $[a,b]$ ?
analysis
$endgroup$
Let $a,b in mathbb{R}$ with $0<a<b$. For each $nin mathbb{N}$, let $f_n:[a,b]longrightarrow mathbb{R}$ be defined by $f_n(x):=left(1+frac{ln x}{n}right)^n$.
Then it is easy to see that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ pointwise, where $f(x)=x$.
Is it true that $limlimits_{nlongrightarrow infty}f_n(x)=f(x)$ uniformly on $[a,b]$ ?
analysis
analysis
edited Jan 18 at 20:32


MPW
30.4k12157
30.4k12157
asked Jan 18 at 20:20
serenusserenus
24316
24316
1
$begingroup$
For a>1, you can use Dini's theorem.
$endgroup$
– J.F
Jan 18 at 20:30
$begingroup$
@G.F: If $a<1$, then it seems possible to handle the intervals $[a,1]$ and $[1,b]$ separately?
$endgroup$
– W-t-P
Jan 18 at 20:38
add a comment |
1
$begingroup$
For a>1, you can use Dini's theorem.
$endgroup$
– J.F
Jan 18 at 20:30
$begingroup$
@G.F: If $a<1$, then it seems possible to handle the intervals $[a,1]$ and $[1,b]$ separately?
$endgroup$
– W-t-P
Jan 18 at 20:38
1
1
$begingroup$
For a>1, you can use Dini's theorem.
$endgroup$
– J.F
Jan 18 at 20:30
$begingroup$
For a>1, you can use Dini's theorem.
$endgroup$
– J.F
Jan 18 at 20:30
$begingroup$
@G.F: If $a<1$, then it seems possible to handle the intervals $[a,1]$ and $[1,b]$ separately?
$endgroup$
– W-t-P
Jan 18 at 20:38
$begingroup$
@G.F: If $a<1$, then it seems possible to handle the intervals $[a,1]$ and $[1,b]$ separately?
$endgroup$
– W-t-P
Jan 18 at 20:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $$f_n(x)le f(x)$$ therefore we need to show that there exists $N$ such that for $0<ale xle b$ and $n>N$ $$0le f(x)-f_n(x)<epsilon$$we need to show that $$max_{ale xle b} f(x)-f_n(x)$$can be bounded arbitrarily small for $N$ being sufficiently large. Now note that$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}$$where $x_0$ is a critical point of $x-f_n(x)$ since $x-f_n(x)$ is differentiable over $[a,b]$ i.e. for $x_0$:$$1=f'_n(x_0)to left(1+{ln xover n}right)^{n-1}=x_0$$by substituting we obtain $$x_0-f_n(x_0)=-{x_0ln x_0over n}$$therefore$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}\=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),{-x_0ln x_0over n}Big}$$but both $a-f_n(a)$ and $b-f_n(b)$ tend to $0$ and ${-x_0ln x_0over n}$ is bounded whenever $ale x_0le b$. Therefore the proof is complete.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078711%2fis-this-sequence-of-functions-uniformly-convergent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $$f_n(x)le f(x)$$ therefore we need to show that there exists $N$ such that for $0<ale xle b$ and $n>N$ $$0le f(x)-f_n(x)<epsilon$$we need to show that $$max_{ale xle b} f(x)-f_n(x)$$can be bounded arbitrarily small for $N$ being sufficiently large. Now note that$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}$$where $x_0$ is a critical point of $x-f_n(x)$ since $x-f_n(x)$ is differentiable over $[a,b]$ i.e. for $x_0$:$$1=f'_n(x_0)to left(1+{ln xover n}right)^{n-1}=x_0$$by substituting we obtain $$x_0-f_n(x_0)=-{x_0ln x_0over n}$$therefore$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}\=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),{-x_0ln x_0over n}Big}$$but both $a-f_n(a)$ and $b-f_n(b)$ tend to $0$ and ${-x_0ln x_0over n}$ is bounded whenever $ale x_0le b$. Therefore the proof is complete.
$endgroup$
add a comment |
$begingroup$
Note that $$f_n(x)le f(x)$$ therefore we need to show that there exists $N$ such that for $0<ale xle b$ and $n>N$ $$0le f(x)-f_n(x)<epsilon$$we need to show that $$max_{ale xle b} f(x)-f_n(x)$$can be bounded arbitrarily small for $N$ being sufficiently large. Now note that$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}$$where $x_0$ is a critical point of $x-f_n(x)$ since $x-f_n(x)$ is differentiable over $[a,b]$ i.e. for $x_0$:$$1=f'_n(x_0)to left(1+{ln xover n}right)^{n-1}=x_0$$by substituting we obtain $$x_0-f_n(x_0)=-{x_0ln x_0over n}$$therefore$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}\=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),{-x_0ln x_0over n}Big}$$but both $a-f_n(a)$ and $b-f_n(b)$ tend to $0$ and ${-x_0ln x_0over n}$ is bounded whenever $ale x_0le b$. Therefore the proof is complete.
$endgroup$
add a comment |
$begingroup$
Note that $$f_n(x)le f(x)$$ therefore we need to show that there exists $N$ such that for $0<ale xle b$ and $n>N$ $$0le f(x)-f_n(x)<epsilon$$we need to show that $$max_{ale xle b} f(x)-f_n(x)$$can be bounded arbitrarily small for $N$ being sufficiently large. Now note that$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}$$where $x_0$ is a critical point of $x-f_n(x)$ since $x-f_n(x)$ is differentiable over $[a,b]$ i.e. for $x_0$:$$1=f'_n(x_0)to left(1+{ln xover n}right)^{n-1}=x_0$$by substituting we obtain $$x_0-f_n(x_0)=-{x_0ln x_0over n}$$therefore$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}\=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),{-x_0ln x_0over n}Big}$$but both $a-f_n(a)$ and $b-f_n(b)$ tend to $0$ and ${-x_0ln x_0over n}$ is bounded whenever $ale x_0le b$. Therefore the proof is complete.
$endgroup$
Note that $$f_n(x)le f(x)$$ therefore we need to show that there exists $N$ such that for $0<ale xle b$ and $n>N$ $$0le f(x)-f_n(x)<epsilon$$we need to show that $$max_{ale xle b} f(x)-f_n(x)$$can be bounded arbitrarily small for $N$ being sufficiently large. Now note that$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}$$where $x_0$ is a critical point of $x-f_n(x)$ since $x-f_n(x)$ is differentiable over $[a,b]$ i.e. for $x_0$:$$1=f'_n(x_0)to left(1+{ln xover n}right)^{n-1}=x_0$$by substituting we obtain $$x_0-f_n(x_0)=-{x_0ln x_0over n}$$therefore$$max_{ale xle b} f(x)-f_n(x)=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),x_0-f_n(x_0)Big}\=max_{x_0text{ is a critical point in }[a,b]}Big{a-f_n(a),b-f_n(b),{-x_0ln x_0over n}Big}$$but both $a-f_n(a)$ and $b-f_n(b)$ tend to $0$ and ${-x_0ln x_0over n}$ is bounded whenever $ale x_0le b$. Therefore the proof is complete.
answered Jan 18 at 21:26


Mostafa AyazMostafa Ayaz
15.6k3939
15.6k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078711%2fis-this-sequence-of-functions-uniformly-convergent%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For a>1, you can use Dini's theorem.
$endgroup$
– J.F
Jan 18 at 20:30
$begingroup$
@G.F: If $a<1$, then it seems possible to handle the intervals $[a,1]$ and $[1,b]$ separately?
$endgroup$
– W-t-P
Jan 18 at 20:38