Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$












2












$begingroup$


If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$



$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$



could some help me with this, thanks










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
    $endgroup$
    – Nick Guerrero
    Jan 9 '17 at 6:05






  • 2




    $begingroup$
    The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
    $endgroup$
    – dxiv
    Jan 9 '17 at 6:12


















2












$begingroup$


If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$



$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$



could some help me with this, thanks










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
    $endgroup$
    – Nick Guerrero
    Jan 9 '17 at 6:05






  • 2




    $begingroup$
    The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
    $endgroup$
    – dxiv
    Jan 9 '17 at 6:12
















2












2








2


1



$begingroup$


If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$



$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$



could some help me with this, thanks










share|cite|improve this question











$endgroup$




If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$



$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$



could some help me with this, thanks







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 14:45









Martin Sleziak

44.8k10118272




44.8k10118272










asked Jan 9 '17 at 6:00









DXTDXT

5,6892630




5,6892630








  • 1




    $begingroup$
    Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
    $endgroup$
    – Nick Guerrero
    Jan 9 '17 at 6:05






  • 2




    $begingroup$
    The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
    $endgroup$
    – dxiv
    Jan 9 '17 at 6:12
















  • 1




    $begingroup$
    Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
    $endgroup$
    – Nick Guerrero
    Jan 9 '17 at 6:05






  • 2




    $begingroup$
    The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
    $endgroup$
    – dxiv
    Jan 9 '17 at 6:12










1




1




$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05




$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05




2




2




$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12






$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12












3 Answers
3






active

oldest

votes


















7












$begingroup$

As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.



Hope you can take it from here.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)

    Add the two 2I = int(1)

    I= 0.25.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Sorry for the unformatted answer, on mobile, in journey
      $endgroup$
      – Red Floyd
      Jan 9 '17 at 7:24










    • $begingroup$
      How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
      $endgroup$
      – Navin
      Apr 7 '17 at 20:13



















    1












    $begingroup$

    You can use the property given here:
    $$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
    int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
    int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
    int_{1/4}^{1/2}[1]dx=frac14,$$

    because:
    $$f(f(x))=x^3-frac32x^2+x+frac14;\
    f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
    -x^3+frac32x^2-x+frac34.$$

    Also, the property mentioned by RedFloyd is given in the above source:
    $$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
    int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2089877%2flet-fx-x3-frac32x2x-frac14-then-the-value-of-int3-4-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.



      Hope you can take it from here.






      share|cite|improve this answer









      $endgroup$


















        7












        $begingroup$

        As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.



        Hope you can take it from here.






        share|cite|improve this answer









        $endgroup$
















          7












          7








          7





          $begingroup$

          As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.



          Hope you can take it from here.






          share|cite|improve this answer









          $endgroup$



          As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.



          Hope you can take it from here.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 9 '17 at 6:23









          RohanRohan

          27.8k42444




          27.8k42444























              2












              $begingroup$

              Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)

              Add the two 2I = int(1)

              I= 0.25.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Sorry for the unformatted answer, on mobile, in journey
                $endgroup$
                – Red Floyd
                Jan 9 '17 at 7:24










              • $begingroup$
                How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
                $endgroup$
                – Navin
                Apr 7 '17 at 20:13
















              2












              $begingroup$

              Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)

              Add the two 2I = int(1)

              I= 0.25.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Sorry for the unformatted answer, on mobile, in journey
                $endgroup$
                – Red Floyd
                Jan 9 '17 at 7:24










              • $begingroup$
                How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
                $endgroup$
                – Navin
                Apr 7 '17 at 20:13














              2












              2








              2





              $begingroup$

              Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)

              Add the two 2I = int(1)

              I= 0.25.






              share|cite|improve this answer











              $endgroup$



              Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)

              Add the two 2I = int(1)

              I= 0.25.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Feb 5 '17 at 18:46

























              answered Jan 9 '17 at 7:10









              Red FloydRed Floyd

              273314




              273314












              • $begingroup$
                Sorry for the unformatted answer, on mobile, in journey
                $endgroup$
                – Red Floyd
                Jan 9 '17 at 7:24










              • $begingroup$
                How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
                $endgroup$
                – Navin
                Apr 7 '17 at 20:13


















              • $begingroup$
                Sorry for the unformatted answer, on mobile, in journey
                $endgroup$
                – Red Floyd
                Jan 9 '17 at 7:24










              • $begingroup$
                How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
                $endgroup$
                – Navin
                Apr 7 '17 at 20:13
















              $begingroup$
              Sorry for the unformatted answer, on mobile, in journey
              $endgroup$
              – Red Floyd
              Jan 9 '17 at 7:24




              $begingroup$
              Sorry for the unformatted answer, on mobile, in journey
              $endgroup$
              – Red Floyd
              Jan 9 '17 at 7:24












              $begingroup$
              How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
              $endgroup$
              – Navin
              Apr 7 '17 at 20:13




              $begingroup$
              How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
              $endgroup$
              – Navin
              Apr 7 '17 at 20:13











              1












              $begingroup$

              You can use the property given here:
              $$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
              int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
              int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
              int_{1/4}^{1/2}[1]dx=frac14,$$

              because:
              $$f(f(x))=x^3-frac32x^2+x+frac14;\
              f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
              -x^3+frac32x^2-x+frac34.$$

              Also, the property mentioned by RedFloyd is given in the above source:
              $$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
              int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                You can use the property given here:
                $$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
                int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
                int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
                int_{1/4}^{1/2}[1]dx=frac14,$$

                because:
                $$f(f(x))=x^3-frac32x^2+x+frac14;\
                f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
                -x^3+frac32x^2-x+frac34.$$

                Also, the property mentioned by RedFloyd is given in the above source:
                $$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
                int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  You can use the property given here:
                  $$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
                  int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
                  int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
                  int_{1/4}^{1/2}[1]dx=frac14,$$

                  because:
                  $$f(f(x))=x^3-frac32x^2+x+frac14;\
                  f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
                  -x^3+frac32x^2-x+frac34.$$

                  Also, the property mentioned by RedFloyd is given in the above source:
                  $$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
                  int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$






                  share|cite|improve this answer









                  $endgroup$



                  You can use the property given here:
                  $$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
                  int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
                  int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
                  int_{1/4}^{1/2}[1]dx=frac14,$$

                  because:
                  $$f(f(x))=x^3-frac32x^2+x+frac14;\
                  f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
                  -x^3+frac32x^2-x+frac34.$$

                  Also, the property mentioned by RedFloyd is given in the above source:
                  $$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
                  int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 12 at 16:24









                  farruhotafarruhota

                  20.2k2738




                  20.2k2738






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2089877%2flet-fx-x3-frac32x2x-frac14-then-the-value-of-int3-4-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith