Let $f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ Then the value of $ int^{3/4}_{1/4}f(f(x))mathrm dx$
$begingroup$
If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$
$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$
could some help me with this, thanks
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$
$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$
could some help me with this, thanks
integration definite-integrals
$endgroup$
1
$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05
2
$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12
add a comment |
$begingroup$
If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$
$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$
could some help me with this, thanks
integration definite-integrals
$endgroup$
If $displaystyle f(x) = x^3-frac{3}{2}x^2+x+frac{1}{4}.$ then the value of $displaystyle int^{frac{3}{4}}_{frac{1}{4}}f(f(x))mathrm dx$
$displaystyle int^{frac{3}{4}}_{frac{1}{4}}(f(x))^3-1.5(f(x))^2+f(x)+0.25 mathrm dx$
could some help me with this, thanks
integration definite-integrals
integration definite-integrals
edited Jan 12 at 14:45


Martin Sleziak
44.8k10118272
44.8k10118272
asked Jan 9 '17 at 6:00
DXTDXT
5,6892630
5,6892630
1
$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05
2
$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12
add a comment |
1
$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05
2
$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12
1
1
$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05
$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05
2
2
$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12
$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.
Hope you can take it from here.
$endgroup$
add a comment |
$begingroup$
Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)
Add the two 2I = int(1)
I= 0.25.
$endgroup$
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
add a comment |
$begingroup$
You can use the property given here:
$$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[1]dx=frac14,$$
because:
$$f(f(x))=x^3-frac32x^2+x+frac14;\
f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
-x^3+frac32x^2-x+frac34.$$
Also, the property mentioned by RedFloyd is given in the above source:
$$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2089877%2flet-fx-x3-frac32x2x-frac14-then-the-value-of-int3-4-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.
Hope you can take it from here.
$endgroup$
add a comment |
$begingroup$
As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.
Hope you can take it from here.
$endgroup$
add a comment |
$begingroup$
As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.
Hope you can take it from here.
$endgroup$
As @dxiv says in the comments, we can write $$f (x) = (x-frac {1}{2})^3 +frac {1}{4}x +frac {3}{8} $$ Thus, substituting $u=x- frac {1}{2}$ gives us $f (u)=u^3+frac {1}{4}(u+frac {1}{2}) +frac {3}{8} = u^3+frac {1}{4}u +frac {1}{2} $. Thus, $$f (f (u)) =(u^3+frac {1}{4}u +frac {1}{2})^3 +frac {1}{4}[u^3 +frac {1}{4}u +frac {1}{2}] +frac {1}{2}$$ As $x $ goes from $frac {1}{4} $ to $frac {3}{4} $,. $u $ goes from $-frac {1}{4} $ to $frac {1}{4} $.
Hope you can take it from here.
answered Jan 9 '17 at 6:23
RohanRohan
27.8k42444
27.8k42444
add a comment |
add a comment |
$begingroup$
Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)
Add the two 2I = int(1)
I= 0.25.
$endgroup$
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
add a comment |
$begingroup$
Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)
Add the two 2I = int(1)
I= 0.25.
$endgroup$
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
add a comment |
$begingroup$
Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)
Add the two 2I = int(1)
I= 0.25.
$endgroup$
Apply kings rule, I=int(f(f(1-x))) =integral( -x3 +1.5x2 -x +0.75)
Add the two 2I = int(1)
I= 0.25.
edited Feb 5 '17 at 18:46
answered Jan 9 '17 at 7:10


Red FloydRed Floyd
273314
273314
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
add a comment |
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
Sorry for the unformatted answer, on mobile, in journey
$endgroup$
– Red Floyd
Jan 9 '17 at 7:24
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
$begingroup$
How could $int f(f(1-x))dx=int -x^3+1.5x^2-x+0.75 dx$ I mean $int f(1-x)=int -x^3+1.5x^2-x+0.75 dx$ and not the one you stated.Thanks.
$endgroup$
– Navin
Apr 7 '17 at 20:13
add a comment |
$begingroup$
You can use the property given here:
$$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[1]dx=frac14,$$
because:
$$f(f(x))=x^3-frac32x^2+x+frac14;\
f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
-x^3+frac32x^2-x+frac34.$$
Also, the property mentioned by RedFloyd is given in the above source:
$$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$
$endgroup$
add a comment |
$begingroup$
You can use the property given here:
$$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[1]dx=frac14,$$
because:
$$f(f(x))=x^3-frac32x^2+x+frac14;\
f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
-x^3+frac32x^2-x+frac34.$$
Also, the property mentioned by RedFloyd is given in the above source:
$$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$
$endgroup$
add a comment |
$begingroup$
You can use the property given here:
$$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[1]dx=frac14,$$
because:
$$f(f(x))=x^3-frac32x^2+x+frac14;\
f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
-x^3+frac32x^2-x+frac34.$$
Also, the property mentioned by RedFloyd is given in the above source:
$$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$
$endgroup$
You can use the property given here:
$$color{blue}{int_a^b f(x)dx=int_a^{(a+b)/2}[f(x)+f(a+b-x)]dx Rightarrow \ int_a^b f(f(x))dx=int_a^{(a+b)/2}[f(f(x))+f(f(a+b-x))]dx};\
int_{1/4}^{3/4} f(f(x))dx=int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[f(f(x))+f(f(1-x))]dx=\
int_{1/4}^{1/2}[1]dx=frac14,$$
because:
$$f(f(x))=x^3-frac32x^2+x+frac14;\
f(f(1-x))=(1-x)^3-frac32(1-x)^2+(1-x)+frac14=
-x^3+frac32x^2-x+frac34.$$
Also, the property mentioned by RedFloyd is given in the above source:
$$color{blue}{int_a^b f(x)dx=int_a^b f(a+b-x)dx Rightarrow \
int_a^b f(f(x))dx=int_a^b f(f(a+b-x))dx}.$$
answered Jan 12 at 16:24


farruhotafarruhota
20.2k2738
20.2k2738
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2089877%2flet-fx-x3-frac32x2x-frac14-then-the-value-of-int3-4-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Is there any reason to not simply expand it out? Or are you looking for something more? If expanding is fine, then wolfram gave an answer of $frac{1}{4}$.
$endgroup$
– Nick Guerrero
Jan 9 '17 at 6:05
2
$begingroup$
The substitution $y=x-frac{1}{2}$ simplifies $f$ to a depressed cubic, and the integration interval to a symmetric one around $0,$.
$endgroup$
– dxiv
Jan 9 '17 at 6:12