Local martingale up to a stopping time vs local martingale
$begingroup$
Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.
Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)
probability-theory stochastic-processes stochastic-calculus
$endgroup$
add a comment |
$begingroup$
Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.
Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)
probability-theory stochastic-processes stochastic-calculus
$endgroup$
$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09
$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51
add a comment |
$begingroup$
Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.
Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)
probability-theory stochastic-processes stochastic-calculus
$endgroup$
Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.
Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)
probability-theory stochastic-processes stochastic-calculus
probability-theory stochastic-processes stochastic-calculus
asked Jan 18 at 18:31
RenRen
317
317
$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09
$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51
add a comment |
$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09
$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51
$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09
$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09
$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51
$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$
$endgroup$
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078605%2flocal-martingale-up-to-a-stopping-time-vs-local-martingale%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$
$endgroup$
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
add a comment |
$begingroup$
Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$
$endgroup$
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
add a comment |
$begingroup$
Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$
$endgroup$
Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$
answered Jan 18 at 21:42


d.k.o.d.k.o.
9,930629
9,930629
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
add a comment |
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078605%2flocal-martingale-up-to-a-stopping-time-vs-local-martingale%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09
$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51