Local martingale up to a stopping time vs local martingale












1












$begingroup$


Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.



Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)










share|cite|improve this question









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/2329717/…
    $endgroup$
    – d.k.o.
    Jan 18 at 19:09










  • $begingroup$
    @d.k.o the $M$ discussed there is already a local martingale up to time $infty$
    $endgroup$
    – Ren
    Jan 18 at 19:51
















1












$begingroup$


Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.



Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)










share|cite|improve this question









$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/2329717/…
    $endgroup$
    – d.k.o.
    Jan 18 at 19:09










  • $begingroup$
    @d.k.o the $M$ discussed there is already a local martingale up to time $infty$
    $endgroup$
    – Ren
    Jan 18 at 19:51














1












1








1


1



$begingroup$


Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.



Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)










share|cite|improve this question









$endgroup$




Let $M$ be a stochastic process, and let $T$ be a stopping time. We call $M$ a local martingale up to $T$ if there exists a sequence $(T_n)$ of stopping times such that $T = text{sup} T_n$ and $M^{T_n}$ is a martingale for all $n$. Moreover, a martingale is a local martingale if it is a local martingale up to $infty$.



Now if $M$ is a continuous local martingale up to $T$, how can I show that $M^T$ is a local martingale? Is continuity necessary for this statement? Thanks for any idea :-)







probability-theory stochastic-processes stochastic-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 18:31









RenRen

317




317












  • $begingroup$
    math.stackexchange.com/questions/2329717/…
    $endgroup$
    – d.k.o.
    Jan 18 at 19:09










  • $begingroup$
    @d.k.o the $M$ discussed there is already a local martingale up to time $infty$
    $endgroup$
    – Ren
    Jan 18 at 19:51


















  • $begingroup$
    math.stackexchange.com/questions/2329717/…
    $endgroup$
    – d.k.o.
    Jan 18 at 19:09










  • $begingroup$
    @d.k.o the $M$ discussed there is already a local martingale up to time $infty$
    $endgroup$
    – Ren
    Jan 18 at 19:51
















$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09




$begingroup$
math.stackexchange.com/questions/2329717/…
$endgroup$
– d.k.o.
Jan 18 at 19:09












$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51




$begingroup$
@d.k.o the $M$ discussed there is already a local martingale up to time $infty$
$endgroup$
– Ren
Jan 18 at 19:51










1 Answer
1






active

oldest

votes


















3












$begingroup$

Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
    $endgroup$
    – Ren
    Jan 19 at 9:00










  • $begingroup$
    $lvert (X^{S_nwedge T_k})_trvertle n$.
    $endgroup$
    – d.k.o.
    Jan 19 at 9:23












  • $begingroup$
    oh thanks a lot!
    $endgroup$
    – Ren
    Jan 19 at 13:10











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078605%2flocal-martingale-up-to-a-stopping-time-vs-local-martingale%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
    $endgroup$
    – Ren
    Jan 19 at 9:00










  • $begingroup$
    $lvert (X^{S_nwedge T_k})_trvertle n$.
    $endgroup$
    – d.k.o.
    Jan 19 at 9:23












  • $begingroup$
    oh thanks a lot!
    $endgroup$
    – Ren
    Jan 19 at 13:10
















3












$begingroup$

Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
    $endgroup$
    – Ren
    Jan 19 at 9:00










  • $begingroup$
    $lvert (X^{S_nwedge T_k})_trvertle n$.
    $endgroup$
    – d.k.o.
    Jan 19 at 9:23












  • $begingroup$
    oh thanks a lot!
    $endgroup$
    – Ren
    Jan 19 at 13:10














3












3








3





$begingroup$

Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$






share|cite|improve this answer









$endgroup$



Let $S_n:=inf{tge 0:|M_t|ge n}$. Since $M$ is continuous $S_nnearrowinfty$ a.s. It tsuffices to show that ${S_n}$ reduces $M^{T}$, i.e. we nts that $(M_{twedge Twedge S_n})$ is a martingale. Let $Xequiv M^T$. Then for each $kge 1$, $X^{S_nwedge T_k}$ is a bounded martingale and $T_knearrow T$ a.s. Therefore, for all $sle t$,
$$
mathsf{E}[X_{twedge S_n}mid mathcal{F}_s]=lim_{ktoinfty}mathsf{E}[X_{twedge S_nwedge T_k}mid mathcal{F}_s]=lim_{ktoinfty}X_{swedge S_nwedge T_k}=X_{swedge S_n} quadtext{a.s.}
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 18 at 21:42









d.k.o.d.k.o.

9,930629




9,930629












  • $begingroup$
    for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
    $endgroup$
    – Ren
    Jan 19 at 9:00










  • $begingroup$
    $lvert (X^{S_nwedge T_k})_trvertle n$.
    $endgroup$
    – d.k.o.
    Jan 19 at 9:23












  • $begingroup$
    oh thanks a lot!
    $endgroup$
    – Ren
    Jan 19 at 13:10


















  • $begingroup$
    for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
    $endgroup$
    – Ren
    Jan 19 at 9:00










  • $begingroup$
    $lvert (X^{S_nwedge T_k})_trvertle n$.
    $endgroup$
    – d.k.o.
    Jan 19 at 9:23












  • $begingroup$
    oh thanks a lot!
    $endgroup$
    – Ren
    Jan 19 at 13:10
















$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00




$begingroup$
for the first equality, the dominant convergence theorem is used. Why is its condition satisfied?
$endgroup$
– Ren
Jan 19 at 9:00












$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23






$begingroup$
$lvert (X^{S_nwedge T_k})_trvertle n$.
$endgroup$
– d.k.o.
Jan 19 at 9:23














$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10




$begingroup$
oh thanks a lot!
$endgroup$
– Ren
Jan 19 at 13:10


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078605%2flocal-martingale-up-to-a-stopping-time-vs-local-martingale%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith