Monotone Convergence Theorem in calculating Lebesgue Integral
$begingroup$
Given the Lebesgue measure $m_2$ on $(mathbb{R}^2,mathbb{B}_2)$, I have the following integral:
$$mu(mathbb{R}^2)=...=int 1_{[1,infty )}frac{1}{x^2}dm(x)$$
My professor insist on using the Monotone Convergence Theorem:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=lim_{ntoinfty}int 1_{[1,n]}frac{1}{x^2}dm(x)=lim_{ntoinfty}int_{1}^nfrac{1}{x^2}dx$$
$$=lim_{ntoinfty}left(-frac{1}{n}-left(-frac{1}{1}right)right)=1$$
Why can I not just make it into the Riemann-integral from first step as:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=int_{1}^inftyfrac{1}{x^2}dx=...,$$
instead of using the Monotone Convergence Theorem? Because the requirements, that $frac{1}{x^2}$ should be positive and continuous are fulfilled.
Any help would be greatly appreciated, as I cannot se why this step is needed.
integration lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Given the Lebesgue measure $m_2$ on $(mathbb{R}^2,mathbb{B}_2)$, I have the following integral:
$$mu(mathbb{R}^2)=...=int 1_{[1,infty )}frac{1}{x^2}dm(x)$$
My professor insist on using the Monotone Convergence Theorem:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=lim_{ntoinfty}int 1_{[1,n]}frac{1}{x^2}dm(x)=lim_{ntoinfty}int_{1}^nfrac{1}{x^2}dx$$
$$=lim_{ntoinfty}left(-frac{1}{n}-left(-frac{1}{1}right)right)=1$$
Why can I not just make it into the Riemann-integral from first step as:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=int_{1}^inftyfrac{1}{x^2}dx=...,$$
instead of using the Monotone Convergence Theorem? Because the requirements, that $frac{1}{x^2}$ should be positive and continuous are fulfilled.
Any help would be greatly appreciated, as I cannot se why this step is needed.
integration lebesgue-integral lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Given the Lebesgue measure $m_2$ on $(mathbb{R}^2,mathbb{B}_2)$, I have the following integral:
$$mu(mathbb{R}^2)=...=int 1_{[1,infty )}frac{1}{x^2}dm(x)$$
My professor insist on using the Monotone Convergence Theorem:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=lim_{ntoinfty}int 1_{[1,n]}frac{1}{x^2}dm(x)=lim_{ntoinfty}int_{1}^nfrac{1}{x^2}dx$$
$$=lim_{ntoinfty}left(-frac{1}{n}-left(-frac{1}{1}right)right)=1$$
Why can I not just make it into the Riemann-integral from first step as:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=int_{1}^inftyfrac{1}{x^2}dx=...,$$
instead of using the Monotone Convergence Theorem? Because the requirements, that $frac{1}{x^2}$ should be positive and continuous are fulfilled.
Any help would be greatly appreciated, as I cannot se why this step is needed.
integration lebesgue-integral lebesgue-measure
$endgroup$
Given the Lebesgue measure $m_2$ on $(mathbb{R}^2,mathbb{B}_2)$, I have the following integral:
$$mu(mathbb{R}^2)=...=int 1_{[1,infty )}frac{1}{x^2}dm(x)$$
My professor insist on using the Monotone Convergence Theorem:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=lim_{ntoinfty}int 1_{[1,n]}frac{1}{x^2}dm(x)=lim_{ntoinfty}int_{1}^nfrac{1}{x^2}dx$$
$$=lim_{ntoinfty}left(-frac{1}{n}-left(-frac{1}{1}right)right)=1$$
Why can I not just make it into the Riemann-integral from first step as:
$$mu(mathbb{R}^2)=int 1_{[1,infty )}frac{1}{x^2}dm(x)=int_{1}^inftyfrac{1}{x^2}dx=...,$$
instead of using the Monotone Convergence Theorem? Because the requirements, that $frac{1}{x^2}$ should be positive and continuous are fulfilled.
Any help would be greatly appreciated, as I cannot se why this step is needed.
integration lebesgue-integral lebesgue-measure
integration lebesgue-integral lebesgue-measure
asked Jan 12 at 13:11
FrederikFrederik
1009
1009
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070883%2fmonotone-convergence-theorem-in-calculating-lebesgue-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070883%2fmonotone-convergence-theorem-in-calculating-lebesgue-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown