Prove that $sqrt{frac{n-1}2} frac{Gammaleft[frac{n-1}2right]}{Gammaleft[frac{n}2right]}gt1quadforall n ge...
$begingroup$
How to prove
$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$
I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.
Any hint? Thanks in advance!
gamma-function
$endgroup$
add a comment |
$begingroup$
How to prove
$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$
I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.
Any hint? Thanks in advance!
gamma-function
$endgroup$
$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52
$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01
add a comment |
$begingroup$
How to prove
$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$
I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.
Any hint? Thanks in advance!
gamma-function
$endgroup$
How to prove
$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$
I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.
Any hint? Thanks in advance!
gamma-function
gamma-function
edited Jan 10 at 8:43
mrtaurho
4,44121235
4,44121235
asked Jan 10 at 7:01
Spaceship222Spaceship222
6217
6217
$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52
$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01
add a comment |
$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52
$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01
$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52
$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52
$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01
$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Putting
$$
F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
$$
then
$$
eqalign{
& F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
over {Gamma left( {{n over 2}} right)^{,2} }} =
{{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
$$
and the result follows from the log-convexity of Gamma
$$
ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
- ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
$$
$endgroup$
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
add a comment |
$begingroup$
At least for "large" values of $n$.
Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
$$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
$$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
)right)+frac{1}{12 p}-frac{1}{360
p^3}+Oleft(frac{1}{p^5}right)$$ and get (continuing with Taylor expansions)
$$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
n^3}+Oleft(frac{1}{n^4}right)$$
$$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068328%2fprove-that-sqrt-fracn-12-frac-gamma-left-fracn-12-right-gamma-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Putting
$$
F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
$$
then
$$
eqalign{
& F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
over {Gamma left( {{n over 2}} right)^{,2} }} =
{{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
$$
and the result follows from the log-convexity of Gamma
$$
ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
- ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
$$
$endgroup$
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
add a comment |
$begingroup$
Putting
$$
F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
$$
then
$$
eqalign{
& F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
over {Gamma left( {{n over 2}} right)^{,2} }} =
{{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
$$
and the result follows from the log-convexity of Gamma
$$
ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
- ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
$$
$endgroup$
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
add a comment |
$begingroup$
Putting
$$
F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
$$
then
$$
eqalign{
& F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
over {Gamma left( {{n over 2}} right)^{,2} }} =
{{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
$$
and the result follows from the log-convexity of Gamma
$$
ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
- ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
$$
$endgroup$
Putting
$$
F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
$$
then
$$
eqalign{
& F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
over {Gamma left( {{n over 2}} right)^{,2} }} =
{{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
$$
and the result follows from the log-convexity of Gamma
$$
ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
- ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
$$
edited Jan 10 at 16:59
answered Jan 10 at 10:56
G CabG Cab
19k31238
19k31238
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
add a comment |
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
Nice proof!Thanks!
$endgroup$
– Spaceship222
Jan 10 at 14:24
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
$begingroup$
@Spaceship222: glad for the appreciation !
$endgroup$
– G Cab
Jan 10 at 16:48
add a comment |
$begingroup$
At least for "large" values of $n$.
Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
$$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
$$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
)right)+frac{1}{12 p}-frac{1}{360
p^3}+Oleft(frac{1}{p^5}right)$$ and get (continuing with Taylor expansions)
$$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
n^3}+Oleft(frac{1}{n^4}right)$$
$$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$
$endgroup$
add a comment |
$begingroup$
At least for "large" values of $n$.
Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
$$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
$$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
)right)+frac{1}{12 p}-frac{1}{360
p^3}+Oleft(frac{1}{p^5}right)$$ and get (continuing with Taylor expansions)
$$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
n^3}+Oleft(frac{1}{n^4}right)$$
$$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$
$endgroup$
add a comment |
$begingroup$
At least for "large" values of $n$.
Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
$$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
$$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
)right)+frac{1}{12 p}-frac{1}{360
p^3}+Oleft(frac{1}{p^5}right)$$ and get (continuing with Taylor expansions)
$$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
n^3}+Oleft(frac{1}{n^4}right)$$
$$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$
$endgroup$
At least for "large" values of $n$.
Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
$$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
$$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
)right)+frac{1}{12 p}-frac{1}{360
p^3}+Oleft(frac{1}{p^5}right)$$ and get (continuing with Taylor expansions)
$$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
n^3}+Oleft(frac{1}{n^4}right)$$
$$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$
answered Jan 10 at 8:35
Claude LeiboviciClaude Leibovici
121k1157133
121k1157133
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068328%2fprove-that-sqrt-fracn-12-frac-gamma-left-fracn-12-right-gamma-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52
$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01