Prove that $sqrt{frac{n-1}2} frac{Gammaleft[frac{n-1}2right]}{Gammaleft[frac{n}2right]}gt1quadforall n ge...












1












$begingroup$


How to prove




$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$




I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.

Any hint? Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    are the square brackets indicating floor ?
    $endgroup$
    – G Cab
    Jan 10 at 9:52










  • $begingroup$
    @GCab No,it has no other meaning.
    $endgroup$
    – Spaceship222
    Jan 10 at 10:01
















1












$begingroup$


How to prove




$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$




I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.

Any hint? Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    are the square brackets indicating floor ?
    $endgroup$
    – G Cab
    Jan 10 at 9:52










  • $begingroup$
    @GCab No,it has no other meaning.
    $endgroup$
    – Spaceship222
    Jan 10 at 10:01














1












1








1





$begingroup$


How to prove




$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$




I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.

Any hint? Thanks in advance!










share|cite|improve this question











$endgroup$




How to prove




$$sqrt{frac{n-1}{2}} frac{Gammaleft[frac{n-1}{2}right]}{Gammaleft[frac{n}{2}right]} gt 1 quad forall n ge 2,nin mathbb{N}$$




I plot this function in Mathematica and verify it indeed is greater than $1$. I just know about some basic property of Gamma function.

Any hint? Thanks in advance!







gamma-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 8:43









mrtaurho

4,44121235




4,44121235










asked Jan 10 at 7:01









Spaceship222Spaceship222

6217




6217












  • $begingroup$
    are the square brackets indicating floor ?
    $endgroup$
    – G Cab
    Jan 10 at 9:52










  • $begingroup$
    @GCab No,it has no other meaning.
    $endgroup$
    – Spaceship222
    Jan 10 at 10:01


















  • $begingroup$
    are the square brackets indicating floor ?
    $endgroup$
    – G Cab
    Jan 10 at 9:52










  • $begingroup$
    @GCab No,it has no other meaning.
    $endgroup$
    – Spaceship222
    Jan 10 at 10:01
















$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52




$begingroup$
are the square brackets indicating floor ?
$endgroup$
– G Cab
Jan 10 at 9:52












$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01




$begingroup$
@GCab No,it has no other meaning.
$endgroup$
– Spaceship222
Jan 10 at 10:01










2 Answers
2






active

oldest

votes


















0












$begingroup$

Putting
$$
F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
$$

then
$$
eqalign{
& F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
over {Gamma left( {{n over 2}} right)^{,2} }} =
{{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
$$

and the result follows from the log-convexity of Gamma
$$
ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
- ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Nice proof!Thanks!
    $endgroup$
    – Spaceship222
    Jan 10 at 14:24










  • $begingroup$
    @Spaceship222: glad for the appreciation !
    $endgroup$
    – G Cab
    Jan 10 at 16:48



















0












$begingroup$

At least for "large" values of $n$.



Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
$$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
$$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
)right)+frac{1}{12 p}-frac{1}{360
p^3}+Oleft(frac{1}{p^5}right)$$
and get (continuing with Taylor expansions)
$$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
n^3}+Oleft(frac{1}{n^4}right)$$

$$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068328%2fprove-that-sqrt-fracn-12-frac-gamma-left-fracn-12-right-gamma-left%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Putting
    $$
    F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
    $$

    then
    $$
    eqalign{
    & F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
    over {Gamma left( {{n over 2}} right)^{,2} }} =
    {{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
    $$

    and the result follows from the log-convexity of Gamma
    $$
    ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
    - ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Nice proof!Thanks!
      $endgroup$
      – Spaceship222
      Jan 10 at 14:24










    • $begingroup$
      @Spaceship222: glad for the appreciation !
      $endgroup$
      – G Cab
      Jan 10 at 16:48
















    0












    $begingroup$

    Putting
    $$
    F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
    $$

    then
    $$
    eqalign{
    & F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
    over {Gamma left( {{n over 2}} right)^{,2} }} =
    {{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
    $$

    and the result follows from the log-convexity of Gamma
    $$
    ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
    - ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Nice proof!Thanks!
      $endgroup$
      – Spaceship222
      Jan 10 at 14:24










    • $begingroup$
      @Spaceship222: glad for the appreciation !
      $endgroup$
      – G Cab
      Jan 10 at 16:48














    0












    0








    0





    $begingroup$

    Putting
    $$
    F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
    $$

    then
    $$
    eqalign{
    & F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
    over {Gamma left( {{n over 2}} right)^{,2} }} =
    {{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
    $$

    and the result follows from the log-convexity of Gamma
    $$
    ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
    - ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
    $$






    share|cite|improve this answer











    $endgroup$



    Putting
    $$
    F(n) = {{sqrt {{{n - 1} over 2}} Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)}}
    $$

    then
    $$
    eqalign{
    & F(n)^{,2} = {{left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)}
    over {Gamma left( {{n over 2}} right)^{,2} }} =
    {{Gamma left( {{{n + 1} over 2}} right)Gamma left( {{{n - 1} over 2}} right)} over {Gamma left( {{n over 2}} right)^{,2} }} cr}
    $$

    and the result follows from the log-convexity of Gamma
    $$
    ln F(n) = {1 over 2}left( {ln Gamma left( {{{n + 1} over 2}} right) + ln Gamma left( {{{n - 1} over 2}} right)} right)
    - ln Gamma left( {{n over 2}} right) > 0quad left| {;1 < n in mathbb R} right.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 10 at 16:59

























    answered Jan 10 at 10:56









    G CabG Cab

    19k31238




    19k31238












    • $begingroup$
      Nice proof!Thanks!
      $endgroup$
      – Spaceship222
      Jan 10 at 14:24










    • $begingroup$
      @Spaceship222: glad for the appreciation !
      $endgroup$
      – G Cab
      Jan 10 at 16:48


















    • $begingroup$
      Nice proof!Thanks!
      $endgroup$
      – Spaceship222
      Jan 10 at 14:24










    • $begingroup$
      @Spaceship222: glad for the appreciation !
      $endgroup$
      – G Cab
      Jan 10 at 16:48
















    $begingroup$
    Nice proof!Thanks!
    $endgroup$
    – Spaceship222
    Jan 10 at 14:24




    $begingroup$
    Nice proof!Thanks!
    $endgroup$
    – Spaceship222
    Jan 10 at 14:24












    $begingroup$
    @Spaceship222: glad for the appreciation !
    $endgroup$
    – G Cab
    Jan 10 at 16:48




    $begingroup$
    @Spaceship222: glad for the appreciation !
    $endgroup$
    – G Cab
    Jan 10 at 16:48











    0












    $begingroup$

    At least for "large" values of $n$.



    Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
    $$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
    $$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
    )right)+frac{1}{12 p}-frac{1}{360
    p^3}+Oleft(frac{1}{p^5}right)$$
    and get (continuing with Taylor expansions)
    $$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
    n^3}+Oleft(frac{1}{n^4}right)$$

    $$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      At least for "large" values of $n$.



      Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
      $$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
      $$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
      )right)+frac{1}{12 p}-frac{1}{360
      p^3}+Oleft(frac{1}{p^5}right)$$
      and get (continuing with Taylor expansions)
      $$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
      n^3}+Oleft(frac{1}{n^4}right)$$

      $$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        At least for "large" values of $n$.



        Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
        $$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
        $$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
        )right)+frac{1}{12 p}-frac{1}{360
        p^3}+Oleft(frac{1}{p^5}right)$$
        and get (continuing with Taylor expansions)
        $$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
        n^3}+Oleft(frac{1}{n^4}right)$$

        $$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$






        share|cite|improve this answer









        $endgroup$



        At least for "large" values of $n$.



        Let $$y=sqrt{frac{n-1}{2}},, frac{Gamma[frac{n-1}{2}]}{Gamma[frac{n}{2}]} $$
        $$log(y)=frac 12 log(n-1)-frac 12 log(2) + log left(Gamma left(frac{n-1}{2}right)right)-log left(Gamma left(frac{n}{2}right)right)$$ Now, use Stirling approximation
        $$log(Gamma(p))=p (log (p)-1)+frac{1}{2} left(-log left({p}right)+log (2 pi
        )right)+frac{1}{12 p}-frac{1}{360
        p^3}+Oleft(frac{1}{p^5}right)$$
        and get (continuing with Taylor expansions)
        $$log(y)=frac{1}{4 n}+frac{1}{4 n^2}+frac{5}{24
        n^3}+Oleft(frac{1}{n^4}right)$$

        $$y=e^{log(y)}=1+frac{1}{4 n}+frac{9}{32 n^2}+frac{35}{128 n^3}+Oleft(frac{1}{n^4}right)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 10 at 8:35









        Claude LeiboviciClaude Leibovici

        121k1157133




        121k1157133






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068328%2fprove-that-sqrt-fracn-12-frac-gamma-left-fracn-12-right-gamma-left%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith