Prove that $ |x|=sup{|f(x)|:fin X^*, ,|f|=1},$ where $xin X$ and $X^*$ denotes the dual space of $X$.
$begingroup$
Let $x$ be an element of a normed linear space $X$ and let $X^*$ denote the dual space of $X$. Prove that
begin{align} |x|=sup{|f(x)|:fin X^*, ,|f|=1} end{align}
MY TRIAL
It suffices to show that
begin{align} forall;epsilon>0,;exists;|f(x_{epsilon})|in {|f(x)|:fin X^*, ,|f|=1};;text{such that}end{align}
begin{align} |x|-epsilon< |f(x_{epsilon})|leq |x|.end{align}
Let $xin X$ such that $xneq 0.$ Otherwise, $|f|=0$. Then, by Hanh-Banach Theorem, there exists a linear functional $f$ on $X$ such that
begin{align} |f|=1 ;;;text{and};;;|f(x)|= |x|leq |x|.end{align}
Please, I'm I right thus far? If yes, I am stuck here as I don't know how to arrive at
begin{align} |x|-epsilon< |f(x)|.end{align}
If no, can you help fix my wrong(s)?
functional-analysis analysis
$endgroup$
add a comment |
$begingroup$
Let $x$ be an element of a normed linear space $X$ and let $X^*$ denote the dual space of $X$. Prove that
begin{align} |x|=sup{|f(x)|:fin X^*, ,|f|=1} end{align}
MY TRIAL
It suffices to show that
begin{align} forall;epsilon>0,;exists;|f(x_{epsilon})|in {|f(x)|:fin X^*, ,|f|=1};;text{such that}end{align}
begin{align} |x|-epsilon< |f(x_{epsilon})|leq |x|.end{align}
Let $xin X$ such that $xneq 0.$ Otherwise, $|f|=0$. Then, by Hanh-Banach Theorem, there exists a linear functional $f$ on $X$ such that
begin{align} |f|=1 ;;;text{and};;;|f(x)|= |x|leq |x|.end{align}
Please, I'm I right thus far? If yes, I am stuck here as I don't know how to arrive at
begin{align} |x|-epsilon< |f(x)|.end{align}
If no, can you help fix my wrong(s)?
functional-analysis analysis
$endgroup$
$begingroup$
Well $|x|-epsilon<|x|$
$endgroup$
– SmileyCraft
Jan 10 at 21:18
$begingroup$
@SmileyCraft: Yes, I agree with you! Okay, do you mean $| x|-epsilon<| x|=|f(x)|$?
$endgroup$
– Omojola Micheal
Jan 10 at 21:19
add a comment |
$begingroup$
Let $x$ be an element of a normed linear space $X$ and let $X^*$ denote the dual space of $X$. Prove that
begin{align} |x|=sup{|f(x)|:fin X^*, ,|f|=1} end{align}
MY TRIAL
It suffices to show that
begin{align} forall;epsilon>0,;exists;|f(x_{epsilon})|in {|f(x)|:fin X^*, ,|f|=1};;text{such that}end{align}
begin{align} |x|-epsilon< |f(x_{epsilon})|leq |x|.end{align}
Let $xin X$ such that $xneq 0.$ Otherwise, $|f|=0$. Then, by Hanh-Banach Theorem, there exists a linear functional $f$ on $X$ such that
begin{align} |f|=1 ;;;text{and};;;|f(x)|= |x|leq |x|.end{align}
Please, I'm I right thus far? If yes, I am stuck here as I don't know how to arrive at
begin{align} |x|-epsilon< |f(x)|.end{align}
If no, can you help fix my wrong(s)?
functional-analysis analysis
$endgroup$
Let $x$ be an element of a normed linear space $X$ and let $X^*$ denote the dual space of $X$. Prove that
begin{align} |x|=sup{|f(x)|:fin X^*, ,|f|=1} end{align}
MY TRIAL
It suffices to show that
begin{align} forall;epsilon>0,;exists;|f(x_{epsilon})|in {|f(x)|:fin X^*, ,|f|=1};;text{such that}end{align}
begin{align} |x|-epsilon< |f(x_{epsilon})|leq |x|.end{align}
Let $xin X$ such that $xneq 0.$ Otherwise, $|f|=0$. Then, by Hanh-Banach Theorem, there exists a linear functional $f$ on $X$ such that
begin{align} |f|=1 ;;;text{and};;;|f(x)|= |x|leq |x|.end{align}
Please, I'm I right thus far? If yes, I am stuck here as I don't know how to arrive at
begin{align} |x|-epsilon< |f(x)|.end{align}
If no, can you help fix my wrong(s)?
functional-analysis analysis
functional-analysis analysis
asked Jan 10 at 21:15


Omojola MichealOmojola Micheal
1,853324
1,853324
$begingroup$
Well $|x|-epsilon<|x|$
$endgroup$
– SmileyCraft
Jan 10 at 21:18
$begingroup$
@SmileyCraft: Yes, I agree with you! Okay, do you mean $| x|-epsilon<| x|=|f(x)|$?
$endgroup$
– Omojola Micheal
Jan 10 at 21:19
add a comment |
$begingroup$
Well $|x|-epsilon<|x|$
$endgroup$
– SmileyCraft
Jan 10 at 21:18
$begingroup$
@SmileyCraft: Yes, I agree with you! Okay, do you mean $| x|-epsilon<| x|=|f(x)|$?
$endgroup$
– Omojola Micheal
Jan 10 at 21:19
$begingroup$
Well $|x|-epsilon<|x|$
$endgroup$
– SmileyCraft
Jan 10 at 21:18
$begingroup$
Well $|x|-epsilon<|x|$
$endgroup$
– SmileyCraft
Jan 10 at 21:18
$begingroup$
@SmileyCraft: Yes, I agree with you! Okay, do you mean $| x|-epsilon<| x|=|f(x)|$?
$endgroup$
– Omojola Micheal
Jan 10 at 21:19
$begingroup$
@SmileyCraft: Yes, I agree with you! Okay, do you mean $| x|-epsilon<| x|=|f(x)|$?
$endgroup$
– Omojola Micheal
Jan 10 at 21:19
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Your approach is flawed for two reasons that I see: first, you talk about an $x_epsilon$, not sure what you expect by that; it's the $f$ that varies here, the $x$ is fixed. Second, you say
"by the Hahn-Banach theorem, there exists a linear function $f$ on $X$ with $|f|=1$ and $|f(x)|=|x|$".
That's not wrong: but it's precisely what you are supposed to prove.
For any $f$ with $|f|leq1$, you have $|f(x)|leq|f|,|x|=|x|$. So $|f(x)|leq|x|$ for any $f$ in your set. And now, we use Hahn-Banach as you say. On the one-dimensional subspace $mathbb C,x$, define $f_0(lambda x)=lambda,|x|$. Then
$$
|f_0(lambda x)|=|lambda,|x|,|=|lambda x|,
$$
so $|f_0|=1$. Now, by Hahn-Banach, there exists $fin X^*$, with $|f|=|f_0|=1$, and $f(x)=f_0(x)=|x|$. So
$$
|x|=max{|f(x)|: fin X^*, |f|=1}.
$$
$endgroup$
add a comment |
$begingroup$
Let’s denote $S_x =sup{|f(x)|:fin X^*, ,|f|=1}$.
We have to prove that $Vert x Vert =S_x$.
If $Vert f Vert =1$, then $vert f(x)vert le Vert xVert$. Hence $S_x le Vert xVert$. Conversely for $xneq0$, on the subspace $mathbb Rx$, the linear form defined by $f(y) = lambda Vert x Vert$ for $y = lambda x$ is such that $f(y) le Vert y Vert$. Using Hahn Banach theorem we can extend $f$ to a linear form on $X$ such that $vert f(y)vert le Vert y Vert$ for $y in X$ and $vert f(x) vert = Vert x Vert$. Hence $S_x ge Vert x Vert$, allowing us to conclude.
$endgroup$
add a comment |
$begingroup$
Credits to Martin Argerami. I present the full proof for future readers.
Let $xin X$ be fixed, such that $xneq 0.$ Consider the subspace spanned by $x$, defined by $Z={ alpha x:;alphain Bbb{R} }.$
Define $f$ arbitrarily by
begin{align} f:,&Zto Bbb{R}\& zmapsto alpha | x |. end{align}
Let $zin Z$, then $f(z)= alpha | x |= |alpha x |= |z |.,$ This implies that $|f(z)|=left||z | right|leq left||z |right|=|z |$ which gives boundedness of $f$ and $|f |=1.$
Let $gamma,lambdain Bbb{R}$ and $y,zin Z,$ then $exists,alpha,beta in Bbb{R}$ such that $y=alpha x$ and $z=beta x.$ Then, $f$ is linear, since
begin{align}fleft(gamma y+lambda zright)&= fleft[(gamma alpha+lambda beta)xright] \&= (gamma alpha+lambda beta)| x |\&= gamma (alpha| x |)+lambda( beta| x |)\&= gamma fleft( yright)+lambda fleft(zright).end{align}
Since $f$ is a linear functional, $;alpha fleft( xright)=fleft(alpha xright)=fleft(z right)=alpha | x |$ implies that $fleft( xright)=| x |.$ By the implication of $f$ being a bounded linear functional, we have by the Hanh-Banach Theorem, that there exists $Fin X^{*}$ s.t. $F(x)=f(x)$ for all $xin Z$ and
begin{align}F(x)=f(x)=| x |;;text{and};;|F |=| f |=1.end{align}
So,
begin{align}| x |=left|| x | right|=left| F(x) right|;;text{for some};;Fin X^{*};;text{and};;|F |=1.end{align}
Taking $sup $ over such $;Fin X^{*};text{and};|F |=1,$ we get
begin{align}| x |=sup{left| F(x) right|:,Fin X^{*},;|F |=1}.end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069178%2fprove-that-x-sup-fxf-in-x-f-1-where-x-in-x-and-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your approach is flawed for two reasons that I see: first, you talk about an $x_epsilon$, not sure what you expect by that; it's the $f$ that varies here, the $x$ is fixed. Second, you say
"by the Hahn-Banach theorem, there exists a linear function $f$ on $X$ with $|f|=1$ and $|f(x)|=|x|$".
That's not wrong: but it's precisely what you are supposed to prove.
For any $f$ with $|f|leq1$, you have $|f(x)|leq|f|,|x|=|x|$. So $|f(x)|leq|x|$ for any $f$ in your set. And now, we use Hahn-Banach as you say. On the one-dimensional subspace $mathbb C,x$, define $f_0(lambda x)=lambda,|x|$. Then
$$
|f_0(lambda x)|=|lambda,|x|,|=|lambda x|,
$$
so $|f_0|=1$. Now, by Hahn-Banach, there exists $fin X^*$, with $|f|=|f_0|=1$, and $f(x)=f_0(x)=|x|$. So
$$
|x|=max{|f(x)|: fin X^*, |f|=1}.
$$
$endgroup$
add a comment |
$begingroup$
Your approach is flawed for two reasons that I see: first, you talk about an $x_epsilon$, not sure what you expect by that; it's the $f$ that varies here, the $x$ is fixed. Second, you say
"by the Hahn-Banach theorem, there exists a linear function $f$ on $X$ with $|f|=1$ and $|f(x)|=|x|$".
That's not wrong: but it's precisely what you are supposed to prove.
For any $f$ with $|f|leq1$, you have $|f(x)|leq|f|,|x|=|x|$. So $|f(x)|leq|x|$ for any $f$ in your set. And now, we use Hahn-Banach as you say. On the one-dimensional subspace $mathbb C,x$, define $f_0(lambda x)=lambda,|x|$. Then
$$
|f_0(lambda x)|=|lambda,|x|,|=|lambda x|,
$$
so $|f_0|=1$. Now, by Hahn-Banach, there exists $fin X^*$, with $|f|=|f_0|=1$, and $f(x)=f_0(x)=|x|$. So
$$
|x|=max{|f(x)|: fin X^*, |f|=1}.
$$
$endgroup$
add a comment |
$begingroup$
Your approach is flawed for two reasons that I see: first, you talk about an $x_epsilon$, not sure what you expect by that; it's the $f$ that varies here, the $x$ is fixed. Second, you say
"by the Hahn-Banach theorem, there exists a linear function $f$ on $X$ with $|f|=1$ and $|f(x)|=|x|$".
That's not wrong: but it's precisely what you are supposed to prove.
For any $f$ with $|f|leq1$, you have $|f(x)|leq|f|,|x|=|x|$. So $|f(x)|leq|x|$ for any $f$ in your set. And now, we use Hahn-Banach as you say. On the one-dimensional subspace $mathbb C,x$, define $f_0(lambda x)=lambda,|x|$. Then
$$
|f_0(lambda x)|=|lambda,|x|,|=|lambda x|,
$$
so $|f_0|=1$. Now, by Hahn-Banach, there exists $fin X^*$, with $|f|=|f_0|=1$, and $f(x)=f_0(x)=|x|$. So
$$
|x|=max{|f(x)|: fin X^*, |f|=1}.
$$
$endgroup$
Your approach is flawed for two reasons that I see: first, you talk about an $x_epsilon$, not sure what you expect by that; it's the $f$ that varies here, the $x$ is fixed. Second, you say
"by the Hahn-Banach theorem, there exists a linear function $f$ on $X$ with $|f|=1$ and $|f(x)|=|x|$".
That's not wrong: but it's precisely what you are supposed to prove.
For any $f$ with $|f|leq1$, you have $|f(x)|leq|f|,|x|=|x|$. So $|f(x)|leq|x|$ for any $f$ in your set. And now, we use Hahn-Banach as you say. On the one-dimensional subspace $mathbb C,x$, define $f_0(lambda x)=lambda,|x|$. Then
$$
|f_0(lambda x)|=|lambda,|x|,|=|lambda x|,
$$
so $|f_0|=1$. Now, by Hahn-Banach, there exists $fin X^*$, with $|f|=|f_0|=1$, and $f(x)=f_0(x)=|x|$. So
$$
|x|=max{|f(x)|: fin X^*, |f|=1}.
$$
answered Jan 10 at 23:09


Martin ArgeramiMartin Argerami
126k1182181
126k1182181
add a comment |
add a comment |
$begingroup$
Let’s denote $S_x =sup{|f(x)|:fin X^*, ,|f|=1}$.
We have to prove that $Vert x Vert =S_x$.
If $Vert f Vert =1$, then $vert f(x)vert le Vert xVert$. Hence $S_x le Vert xVert$. Conversely for $xneq0$, on the subspace $mathbb Rx$, the linear form defined by $f(y) = lambda Vert x Vert$ for $y = lambda x$ is such that $f(y) le Vert y Vert$. Using Hahn Banach theorem we can extend $f$ to a linear form on $X$ such that $vert f(y)vert le Vert y Vert$ for $y in X$ and $vert f(x) vert = Vert x Vert$. Hence $S_x ge Vert x Vert$, allowing us to conclude.
$endgroup$
add a comment |
$begingroup$
Let’s denote $S_x =sup{|f(x)|:fin X^*, ,|f|=1}$.
We have to prove that $Vert x Vert =S_x$.
If $Vert f Vert =1$, then $vert f(x)vert le Vert xVert$. Hence $S_x le Vert xVert$. Conversely for $xneq0$, on the subspace $mathbb Rx$, the linear form defined by $f(y) = lambda Vert x Vert$ for $y = lambda x$ is such that $f(y) le Vert y Vert$. Using Hahn Banach theorem we can extend $f$ to a linear form on $X$ such that $vert f(y)vert le Vert y Vert$ for $y in X$ and $vert f(x) vert = Vert x Vert$. Hence $S_x ge Vert x Vert$, allowing us to conclude.
$endgroup$
add a comment |
$begingroup$
Let’s denote $S_x =sup{|f(x)|:fin X^*, ,|f|=1}$.
We have to prove that $Vert x Vert =S_x$.
If $Vert f Vert =1$, then $vert f(x)vert le Vert xVert$. Hence $S_x le Vert xVert$. Conversely for $xneq0$, on the subspace $mathbb Rx$, the linear form defined by $f(y) = lambda Vert x Vert$ for $y = lambda x$ is such that $f(y) le Vert y Vert$. Using Hahn Banach theorem we can extend $f$ to a linear form on $X$ such that $vert f(y)vert le Vert y Vert$ for $y in X$ and $vert f(x) vert = Vert x Vert$. Hence $S_x ge Vert x Vert$, allowing us to conclude.
$endgroup$
Let’s denote $S_x =sup{|f(x)|:fin X^*, ,|f|=1}$.
We have to prove that $Vert x Vert =S_x$.
If $Vert f Vert =1$, then $vert f(x)vert le Vert xVert$. Hence $S_x le Vert xVert$. Conversely for $xneq0$, on the subspace $mathbb Rx$, the linear form defined by $f(y) = lambda Vert x Vert$ for $y = lambda x$ is such that $f(y) le Vert y Vert$. Using Hahn Banach theorem we can extend $f$ to a linear form on $X$ such that $vert f(y)vert le Vert y Vert$ for $y in X$ and $vert f(x) vert = Vert x Vert$. Hence $S_x ge Vert x Vert$, allowing us to conclude.
answered Jan 10 at 22:08


mathcounterexamples.netmathcounterexamples.net
26.6k22157
26.6k22157
add a comment |
add a comment |
$begingroup$
Credits to Martin Argerami. I present the full proof for future readers.
Let $xin X$ be fixed, such that $xneq 0.$ Consider the subspace spanned by $x$, defined by $Z={ alpha x:;alphain Bbb{R} }.$
Define $f$ arbitrarily by
begin{align} f:,&Zto Bbb{R}\& zmapsto alpha | x |. end{align}
Let $zin Z$, then $f(z)= alpha | x |= |alpha x |= |z |.,$ This implies that $|f(z)|=left||z | right|leq left||z |right|=|z |$ which gives boundedness of $f$ and $|f |=1.$
Let $gamma,lambdain Bbb{R}$ and $y,zin Z,$ then $exists,alpha,beta in Bbb{R}$ such that $y=alpha x$ and $z=beta x.$ Then, $f$ is linear, since
begin{align}fleft(gamma y+lambda zright)&= fleft[(gamma alpha+lambda beta)xright] \&= (gamma alpha+lambda beta)| x |\&= gamma (alpha| x |)+lambda( beta| x |)\&= gamma fleft( yright)+lambda fleft(zright).end{align}
Since $f$ is a linear functional, $;alpha fleft( xright)=fleft(alpha xright)=fleft(z right)=alpha | x |$ implies that $fleft( xright)=| x |.$ By the implication of $f$ being a bounded linear functional, we have by the Hanh-Banach Theorem, that there exists $Fin X^{*}$ s.t. $F(x)=f(x)$ for all $xin Z$ and
begin{align}F(x)=f(x)=| x |;;text{and};;|F |=| f |=1.end{align}
So,
begin{align}| x |=left|| x | right|=left| F(x) right|;;text{for some};;Fin X^{*};;text{and};;|F |=1.end{align}
Taking $sup $ over such $;Fin X^{*};text{and};|F |=1,$ we get
begin{align}| x |=sup{left| F(x) right|:,Fin X^{*},;|F |=1}.end{align}
$endgroup$
add a comment |
$begingroup$
Credits to Martin Argerami. I present the full proof for future readers.
Let $xin X$ be fixed, such that $xneq 0.$ Consider the subspace spanned by $x$, defined by $Z={ alpha x:;alphain Bbb{R} }.$
Define $f$ arbitrarily by
begin{align} f:,&Zto Bbb{R}\& zmapsto alpha | x |. end{align}
Let $zin Z$, then $f(z)= alpha | x |= |alpha x |= |z |.,$ This implies that $|f(z)|=left||z | right|leq left||z |right|=|z |$ which gives boundedness of $f$ and $|f |=1.$
Let $gamma,lambdain Bbb{R}$ and $y,zin Z,$ then $exists,alpha,beta in Bbb{R}$ such that $y=alpha x$ and $z=beta x.$ Then, $f$ is linear, since
begin{align}fleft(gamma y+lambda zright)&= fleft[(gamma alpha+lambda beta)xright] \&= (gamma alpha+lambda beta)| x |\&= gamma (alpha| x |)+lambda( beta| x |)\&= gamma fleft( yright)+lambda fleft(zright).end{align}
Since $f$ is a linear functional, $;alpha fleft( xright)=fleft(alpha xright)=fleft(z right)=alpha | x |$ implies that $fleft( xright)=| x |.$ By the implication of $f$ being a bounded linear functional, we have by the Hanh-Banach Theorem, that there exists $Fin X^{*}$ s.t. $F(x)=f(x)$ for all $xin Z$ and
begin{align}F(x)=f(x)=| x |;;text{and};;|F |=| f |=1.end{align}
So,
begin{align}| x |=left|| x | right|=left| F(x) right|;;text{for some};;Fin X^{*};;text{and};;|F |=1.end{align}
Taking $sup $ over such $;Fin X^{*};text{and};|F |=1,$ we get
begin{align}| x |=sup{left| F(x) right|:,Fin X^{*},;|F |=1}.end{align}
$endgroup$
add a comment |
$begingroup$
Credits to Martin Argerami. I present the full proof for future readers.
Let $xin X$ be fixed, such that $xneq 0.$ Consider the subspace spanned by $x$, defined by $Z={ alpha x:;alphain Bbb{R} }.$
Define $f$ arbitrarily by
begin{align} f:,&Zto Bbb{R}\& zmapsto alpha | x |. end{align}
Let $zin Z$, then $f(z)= alpha | x |= |alpha x |= |z |.,$ This implies that $|f(z)|=left||z | right|leq left||z |right|=|z |$ which gives boundedness of $f$ and $|f |=1.$
Let $gamma,lambdain Bbb{R}$ and $y,zin Z,$ then $exists,alpha,beta in Bbb{R}$ such that $y=alpha x$ and $z=beta x.$ Then, $f$ is linear, since
begin{align}fleft(gamma y+lambda zright)&= fleft[(gamma alpha+lambda beta)xright] \&= (gamma alpha+lambda beta)| x |\&= gamma (alpha| x |)+lambda( beta| x |)\&= gamma fleft( yright)+lambda fleft(zright).end{align}
Since $f$ is a linear functional, $;alpha fleft( xright)=fleft(alpha xright)=fleft(z right)=alpha | x |$ implies that $fleft( xright)=| x |.$ By the implication of $f$ being a bounded linear functional, we have by the Hanh-Banach Theorem, that there exists $Fin X^{*}$ s.t. $F(x)=f(x)$ for all $xin Z$ and
begin{align}F(x)=f(x)=| x |;;text{and};;|F |=| f |=1.end{align}
So,
begin{align}| x |=left|| x | right|=left| F(x) right|;;text{for some};;Fin X^{*};;text{and};;|F |=1.end{align}
Taking $sup $ over such $;Fin X^{*};text{and};|F |=1,$ we get
begin{align}| x |=sup{left| F(x) right|:,Fin X^{*},;|F |=1}.end{align}
$endgroup$
Credits to Martin Argerami. I present the full proof for future readers.
Let $xin X$ be fixed, such that $xneq 0.$ Consider the subspace spanned by $x$, defined by $Z={ alpha x:;alphain Bbb{R} }.$
Define $f$ arbitrarily by
begin{align} f:,&Zto Bbb{R}\& zmapsto alpha | x |. end{align}
Let $zin Z$, then $f(z)= alpha | x |= |alpha x |= |z |.,$ This implies that $|f(z)|=left||z | right|leq left||z |right|=|z |$ which gives boundedness of $f$ and $|f |=1.$
Let $gamma,lambdain Bbb{R}$ and $y,zin Z,$ then $exists,alpha,beta in Bbb{R}$ such that $y=alpha x$ and $z=beta x.$ Then, $f$ is linear, since
begin{align}fleft(gamma y+lambda zright)&= fleft[(gamma alpha+lambda beta)xright] \&= (gamma alpha+lambda beta)| x |\&= gamma (alpha| x |)+lambda( beta| x |)\&= gamma fleft( yright)+lambda fleft(zright).end{align}
Since $f$ is a linear functional, $;alpha fleft( xright)=fleft(alpha xright)=fleft(z right)=alpha | x |$ implies that $fleft( xright)=| x |.$ By the implication of $f$ being a bounded linear functional, we have by the Hanh-Banach Theorem, that there exists $Fin X^{*}$ s.t. $F(x)=f(x)$ for all $xin Z$ and
begin{align}F(x)=f(x)=| x |;;text{and};;|F |=| f |=1.end{align}
So,
begin{align}| x |=left|| x | right|=left| F(x) right|;;text{for some};;Fin X^{*};;text{and};;|F |=1.end{align}
Taking $sup $ over such $;Fin X^{*};text{and};|F |=1,$ we get
begin{align}| x |=sup{left| F(x) right|:,Fin X^{*},;|F |=1}.end{align}
answered Jan 11 at 6:09


Omojola MichealOmojola Micheal
1,853324
1,853324
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069178%2fprove-that-x-sup-fxf-in-x-f-1-where-x-in-x-and-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Well $|x|-epsilon<|x|$
$endgroup$
– SmileyCraft
Jan 10 at 21:18
$begingroup$
@SmileyCraft: Yes, I agree with you! Okay, do you mean $| x|-epsilon<| x|=|f(x)|$?
$endgroup$
– Omojola Micheal
Jan 10 at 21:19