show this inequality with $sum_{i=1}^{n}a_{i}=n$












10












$begingroup$



Let $nge 3$ be postive number,$a_{i}>0,i=1,2,cdots,n$,and $displaystylesum_{i=1}^{n}a_{i}=n$,show that
$$a^3_{1}a_{2}+a^3_{2}a_{3}+cdots+a^3_{n}a_{1}+nge 2(a_{1}a_{2}cdots a_{n-1}+a_{2}a_{3}cdots a_{n}+a_{n}a_{1}cdots a_{n-2})$$




it seem can use indution to prove it.when $n=3$,it must prove
$$a^3_{1}a_{2}+a^3_{2}a_{3}+a^3_{3}a_{1}+3ge 2(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1})$$
it seem use three shcur inequaliy
$$a^3+b^3+c^3+3abcge sum ab(a+b)$$
then we have
$$a^2+b^2+c^2+3(abc)^{2/3}ge 2(ab+bc+ca)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you have a source for this problem? Where did you find it? Please mention for context.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 19 at 4:00










  • $begingroup$
    For $n=4$ how is the inequality formed?
    $endgroup$
    – Nikos Bagis
    Jan 20 at 23:13










  • $begingroup$
    @Nikos Bagis Let $a$, $b$, $c$ and $d$ be positive numbers such that $a+b+c+d=4$. Prove that: $a^3b+b^3c+c^3d+d^3a+4geq2(abc+abd+acd+bcd).$ It's true, I proved it.
    $endgroup$
    – Michael Rozenberg
    Jan 21 at 3:41










  • $begingroup$
    So there is misprint in the statement in the given inequality. It should read as $a_1^3a_2+a_2^3a_3+ldots+a_n^3a_1+ngeq 2sum^{n}_{i_1<i_2<ldots<i_{n-1}}a_{i_1}a_{i_2}ldots a_{i_{n-1}}$
    $endgroup$
    – Nikos Bagis
    Jan 21 at 8:31
















10












$begingroup$



Let $nge 3$ be postive number,$a_{i}>0,i=1,2,cdots,n$,and $displaystylesum_{i=1}^{n}a_{i}=n$,show that
$$a^3_{1}a_{2}+a^3_{2}a_{3}+cdots+a^3_{n}a_{1}+nge 2(a_{1}a_{2}cdots a_{n-1}+a_{2}a_{3}cdots a_{n}+a_{n}a_{1}cdots a_{n-2})$$




it seem can use indution to prove it.when $n=3$,it must prove
$$a^3_{1}a_{2}+a^3_{2}a_{3}+a^3_{3}a_{1}+3ge 2(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1})$$
it seem use three shcur inequaliy
$$a^3+b^3+c^3+3abcge sum ab(a+b)$$
then we have
$$a^2+b^2+c^2+3(abc)^{2/3}ge 2(ab+bc+ca)$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you have a source for this problem? Where did you find it? Please mention for context.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 19 at 4:00










  • $begingroup$
    For $n=4$ how is the inequality formed?
    $endgroup$
    – Nikos Bagis
    Jan 20 at 23:13










  • $begingroup$
    @Nikos Bagis Let $a$, $b$, $c$ and $d$ be positive numbers such that $a+b+c+d=4$. Prove that: $a^3b+b^3c+c^3d+d^3a+4geq2(abc+abd+acd+bcd).$ It's true, I proved it.
    $endgroup$
    – Michael Rozenberg
    Jan 21 at 3:41










  • $begingroup$
    So there is misprint in the statement in the given inequality. It should read as $a_1^3a_2+a_2^3a_3+ldots+a_n^3a_1+ngeq 2sum^{n}_{i_1<i_2<ldots<i_{n-1}}a_{i_1}a_{i_2}ldots a_{i_{n-1}}$
    $endgroup$
    – Nikos Bagis
    Jan 21 at 8:31














10












10








10


5



$begingroup$



Let $nge 3$ be postive number,$a_{i}>0,i=1,2,cdots,n$,and $displaystylesum_{i=1}^{n}a_{i}=n$,show that
$$a^3_{1}a_{2}+a^3_{2}a_{3}+cdots+a^3_{n}a_{1}+nge 2(a_{1}a_{2}cdots a_{n-1}+a_{2}a_{3}cdots a_{n}+a_{n}a_{1}cdots a_{n-2})$$




it seem can use indution to prove it.when $n=3$,it must prove
$$a^3_{1}a_{2}+a^3_{2}a_{3}+a^3_{3}a_{1}+3ge 2(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1})$$
it seem use three shcur inequaliy
$$a^3+b^3+c^3+3abcge sum ab(a+b)$$
then we have
$$a^2+b^2+c^2+3(abc)^{2/3}ge 2(ab+bc+ca)$$










share|cite|improve this question











$endgroup$





Let $nge 3$ be postive number,$a_{i}>0,i=1,2,cdots,n$,and $displaystylesum_{i=1}^{n}a_{i}=n$,show that
$$a^3_{1}a_{2}+a^3_{2}a_{3}+cdots+a^3_{n}a_{1}+nge 2(a_{1}a_{2}cdots a_{n-1}+a_{2}a_{3}cdots a_{n}+a_{n}a_{1}cdots a_{n-2})$$




it seem can use indution to prove it.when $n=3$,it must prove
$$a^3_{1}a_{2}+a^3_{2}a_{3}+a^3_{3}a_{1}+3ge 2(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1})$$
it seem use three shcur inequaliy
$$a^3+b^3+c^3+3abcge sum ab(a+b)$$
then we have
$$a^2+b^2+c^2+3(abc)^{2/3}ge 2(ab+bc+ca)$$







multivariable-calculus inequality a.m.-g.m.-inequality buffalo-way






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 25 at 17:58









Michael Rozenberg

101k1591193




101k1591193










asked Jan 10 at 3:35









geromtygeromty

977423




977423












  • $begingroup$
    Do you have a source for this problem? Where did you find it? Please mention for context.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 19 at 4:00










  • $begingroup$
    For $n=4$ how is the inequality formed?
    $endgroup$
    – Nikos Bagis
    Jan 20 at 23:13










  • $begingroup$
    @Nikos Bagis Let $a$, $b$, $c$ and $d$ be positive numbers such that $a+b+c+d=4$. Prove that: $a^3b+b^3c+c^3d+d^3a+4geq2(abc+abd+acd+bcd).$ It's true, I proved it.
    $endgroup$
    – Michael Rozenberg
    Jan 21 at 3:41










  • $begingroup$
    So there is misprint in the statement in the given inequality. It should read as $a_1^3a_2+a_2^3a_3+ldots+a_n^3a_1+ngeq 2sum^{n}_{i_1<i_2<ldots<i_{n-1}}a_{i_1}a_{i_2}ldots a_{i_{n-1}}$
    $endgroup$
    – Nikos Bagis
    Jan 21 at 8:31


















  • $begingroup$
    Do you have a source for this problem? Where did you find it? Please mention for context.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jan 19 at 4:00










  • $begingroup$
    For $n=4$ how is the inequality formed?
    $endgroup$
    – Nikos Bagis
    Jan 20 at 23:13










  • $begingroup$
    @Nikos Bagis Let $a$, $b$, $c$ and $d$ be positive numbers such that $a+b+c+d=4$. Prove that: $a^3b+b^3c+c^3d+d^3a+4geq2(abc+abd+acd+bcd).$ It's true, I proved it.
    $endgroup$
    – Michael Rozenberg
    Jan 21 at 3:41










  • $begingroup$
    So there is misprint in the statement in the given inequality. It should read as $a_1^3a_2+a_2^3a_3+ldots+a_n^3a_1+ngeq 2sum^{n}_{i_1<i_2<ldots<i_{n-1}}a_{i_1}a_{i_2}ldots a_{i_{n-1}}$
    $endgroup$
    – Nikos Bagis
    Jan 21 at 8:31
















$begingroup$
Do you have a source for this problem? Where did you find it? Please mention for context.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 19 at 4:00




$begingroup$
Do you have a source for this problem? Where did you find it? Please mention for context.
$endgroup$
– астон вілла олоф мэллбэрг
Jan 19 at 4:00












$begingroup$
For $n=4$ how is the inequality formed?
$endgroup$
– Nikos Bagis
Jan 20 at 23:13




$begingroup$
For $n=4$ how is the inequality formed?
$endgroup$
– Nikos Bagis
Jan 20 at 23:13












$begingroup$
@Nikos Bagis Let $a$, $b$, $c$ and $d$ be positive numbers such that $a+b+c+d=4$. Prove that: $a^3b+b^3c+c^3d+d^3a+4geq2(abc+abd+acd+bcd).$ It's true, I proved it.
$endgroup$
– Michael Rozenberg
Jan 21 at 3:41




$begingroup$
@Nikos Bagis Let $a$, $b$, $c$ and $d$ be positive numbers such that $a+b+c+d=4$. Prove that: $a^3b+b^3c+c^3d+d^3a+4geq2(abc+abd+acd+bcd).$ It's true, I proved it.
$endgroup$
– Michael Rozenberg
Jan 21 at 3:41












$begingroup$
So there is misprint in the statement in the given inequality. It should read as $a_1^3a_2+a_2^3a_3+ldots+a_n^3a_1+ngeq 2sum^{n}_{i_1<i_2<ldots<i_{n-1}}a_{i_1}a_{i_2}ldots a_{i_{n-1}}$
$endgroup$
– Nikos Bagis
Jan 21 at 8:31




$begingroup$
So there is misprint in the statement in the given inequality. It should read as $a_1^3a_2+a_2^3a_3+ldots+a_n^3a_1+ngeq 2sum^{n}_{i_1<i_2<ldots<i_{n-1}}a_{i_1}a_{i_2}ldots a_{i_{n-1}}$
$endgroup$
– Nikos Bagis
Jan 21 at 8:31










2 Answers
2






active

oldest

votes


















3





+25







$begingroup$

The hint.



Prove this inequality for $n=3$ and for $n=4$.



But for all $ngeq5$ by AM-GM we obtain:
$$sum_{k=1}^na_k^3a_{k+1}geq nsqrt[n]{prod_{k=1}^na_k^4}.$$
Thus, it's enough to prove that:
$$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
Now, let $prodlimits_{k=1}^na_k=const$ and $f(x)=-frac{1}{x}.$



Thus, $$g(x)=f'left(frac{1}{x}right)=x^2$$ is strictly convex on $(0,+infty),$ which says that by Vasc's EV Method, theorem 1.3 (1), $p=0$ from here
https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/059_06.pdf



the expression $sumlimits_{k=1}^nf(x_k)=-sumlimits_{k=1}^nfrac{1}{a_k}$ gets a minimal value, when $n-1$ variables are equal.



After homogenization it's enough to assume that $a_1=a$ and $a_2=...=a_n=1$ and we need to prove that:
$$nsqrt[n]{a^4}left(frac{a+n-1}{n}right)^{n-5}+nleft(frac{a+n-1}{n}right)^{n-1}geq2((n-1)a+1),$$
which is true by AM-GM!



Indeed, let $a=x^n$.



Thus, we need to prove that
$$P(x)=x^{n^2-n}+b_1x^{n^2-n-1}+...+b_{n^2-n}geq0,$$ where only coefficient before $x^n$ is negative.



But the inequality $$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
is symmetric, which says that the polynomial $P$ is divisible by $(x-1)^2.$



Now, we see that the sum of coefficients of $P'(x)$ is equal to zero,



which says that $P(x)geq0$ by AM-GM.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How is your last inequality true?
    $endgroup$
    – didgogns
    Jan 21 at 22:32










  • $begingroup$
    @didgogns I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 22 at 8:55






  • 1




    $begingroup$
    A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
    $endgroup$
    – didgogns
    Jan 22 at 9:07










  • $begingroup$
    but how to prove $n=3$ and $n=4$?
    $endgroup$
    – geromty
    Jan 23 at 10:31










  • $begingroup$
    @geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
    $endgroup$
    – Michael Rozenberg
    Jan 23 at 10:35





















1












$begingroup$

A dull proof for $n<5$ by BW(Buffalo Way).



For $n=4$, it is enough to prove$$64(a^3b+b^3c+c^3d+d^3a)+(a+b+c+d)^2 ge 32(a+b+c+d)(abc+abd+acd+bcd)$$and WLOG we can assume $a$ is smallest of the four numbers.



That is, $b=a+u$, $c=a+v$ and $d=a+w$ for some positive numbers $u,v,w$. Expanding gives
$$64a^2(3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2)\
+16aleft(left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w right)\
+left(left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w right)ge 0$$

and each coeffcients are nonnegative. Indeed,
$$3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2 ge 2(u-w)^2+0.5(u-v)^2+0.5(v-w)^2 ge 0,$$
$$left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w\ge left(sum_{cyc} 4u^3right) + 4 u^2 v - u w^2 -7vw^2 + 11 v^2 w \ge (4u^3-uw^2+2w^3)+(4v^3+11v^2w-7vw^2+2w^3)ge 0$$
and
$$left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w\geleft(sum_{cyc} 4u^3w-13u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3w\ge v(68u^3-13u^2w-13uw^2+4w^3)+w(68v^3-13uv^2+4u^3)ge 0$$



For $n=3$, it is enough to show
$$27(a^3b+b^3c+c^3a)+(a+b+c)^4ge6(ab+bc+ca)(a+b+c)^2$$
and similarly, let $b=a+u$, $c=a+v$ and expanding gives
$$45a^2(u^2 - u v + v^2)\
+9a(3 u^3 + 5 u^2 v - 4 u v^2 + 3 v^3)\
+(u^4 + 25 u^3 v - 6 u^2 v^2 - 2 u v^3 + v^4)ge 0$$

and you can check each of these polynomials are nonnegative for positive $u, v, w$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Yes! The hardest case $ngeq5$ turned out simple.
    $endgroup$
    – Michael Rozenberg
    Jan 25 at 18:00











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068203%2fshow-this-inequality-with-sum-i-1na-i-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3





+25







$begingroup$

The hint.



Prove this inequality for $n=3$ and for $n=4$.



But for all $ngeq5$ by AM-GM we obtain:
$$sum_{k=1}^na_k^3a_{k+1}geq nsqrt[n]{prod_{k=1}^na_k^4}.$$
Thus, it's enough to prove that:
$$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
Now, let $prodlimits_{k=1}^na_k=const$ and $f(x)=-frac{1}{x}.$



Thus, $$g(x)=f'left(frac{1}{x}right)=x^2$$ is strictly convex on $(0,+infty),$ which says that by Vasc's EV Method, theorem 1.3 (1), $p=0$ from here
https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/059_06.pdf



the expression $sumlimits_{k=1}^nf(x_k)=-sumlimits_{k=1}^nfrac{1}{a_k}$ gets a minimal value, when $n-1$ variables are equal.



After homogenization it's enough to assume that $a_1=a$ and $a_2=...=a_n=1$ and we need to prove that:
$$nsqrt[n]{a^4}left(frac{a+n-1}{n}right)^{n-5}+nleft(frac{a+n-1}{n}right)^{n-1}geq2((n-1)a+1),$$
which is true by AM-GM!



Indeed, let $a=x^n$.



Thus, we need to prove that
$$P(x)=x^{n^2-n}+b_1x^{n^2-n-1}+...+b_{n^2-n}geq0,$$ where only coefficient before $x^n$ is negative.



But the inequality $$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
is symmetric, which says that the polynomial $P$ is divisible by $(x-1)^2.$



Now, we see that the sum of coefficients of $P'(x)$ is equal to zero,



which says that $P(x)geq0$ by AM-GM.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How is your last inequality true?
    $endgroup$
    – didgogns
    Jan 21 at 22:32










  • $begingroup$
    @didgogns I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 22 at 8:55






  • 1




    $begingroup$
    A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
    $endgroup$
    – didgogns
    Jan 22 at 9:07










  • $begingroup$
    but how to prove $n=3$ and $n=4$?
    $endgroup$
    – geromty
    Jan 23 at 10:31










  • $begingroup$
    @geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
    $endgroup$
    – Michael Rozenberg
    Jan 23 at 10:35


















3





+25







$begingroup$

The hint.



Prove this inequality for $n=3$ and for $n=4$.



But for all $ngeq5$ by AM-GM we obtain:
$$sum_{k=1}^na_k^3a_{k+1}geq nsqrt[n]{prod_{k=1}^na_k^4}.$$
Thus, it's enough to prove that:
$$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
Now, let $prodlimits_{k=1}^na_k=const$ and $f(x)=-frac{1}{x}.$



Thus, $$g(x)=f'left(frac{1}{x}right)=x^2$$ is strictly convex on $(0,+infty),$ which says that by Vasc's EV Method, theorem 1.3 (1), $p=0$ from here
https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/059_06.pdf



the expression $sumlimits_{k=1}^nf(x_k)=-sumlimits_{k=1}^nfrac{1}{a_k}$ gets a minimal value, when $n-1$ variables are equal.



After homogenization it's enough to assume that $a_1=a$ and $a_2=...=a_n=1$ and we need to prove that:
$$nsqrt[n]{a^4}left(frac{a+n-1}{n}right)^{n-5}+nleft(frac{a+n-1}{n}right)^{n-1}geq2((n-1)a+1),$$
which is true by AM-GM!



Indeed, let $a=x^n$.



Thus, we need to prove that
$$P(x)=x^{n^2-n}+b_1x^{n^2-n-1}+...+b_{n^2-n}geq0,$$ where only coefficient before $x^n$ is negative.



But the inequality $$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
is symmetric, which says that the polynomial $P$ is divisible by $(x-1)^2.$



Now, we see that the sum of coefficients of $P'(x)$ is equal to zero,



which says that $P(x)geq0$ by AM-GM.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How is your last inequality true?
    $endgroup$
    – didgogns
    Jan 21 at 22:32










  • $begingroup$
    @didgogns I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 22 at 8:55






  • 1




    $begingroup$
    A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
    $endgroup$
    – didgogns
    Jan 22 at 9:07










  • $begingroup$
    but how to prove $n=3$ and $n=4$?
    $endgroup$
    – geromty
    Jan 23 at 10:31










  • $begingroup$
    @geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
    $endgroup$
    – Michael Rozenberg
    Jan 23 at 10:35
















3





+25







3





+25



3




+25



$begingroup$

The hint.



Prove this inequality for $n=3$ and for $n=4$.



But for all $ngeq5$ by AM-GM we obtain:
$$sum_{k=1}^na_k^3a_{k+1}geq nsqrt[n]{prod_{k=1}^na_k^4}.$$
Thus, it's enough to prove that:
$$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
Now, let $prodlimits_{k=1}^na_k=const$ and $f(x)=-frac{1}{x}.$



Thus, $$g(x)=f'left(frac{1}{x}right)=x^2$$ is strictly convex on $(0,+infty),$ which says that by Vasc's EV Method, theorem 1.3 (1), $p=0$ from here
https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/059_06.pdf



the expression $sumlimits_{k=1}^nf(x_k)=-sumlimits_{k=1}^nfrac{1}{a_k}$ gets a minimal value, when $n-1$ variables are equal.



After homogenization it's enough to assume that $a_1=a$ and $a_2=...=a_n=1$ and we need to prove that:
$$nsqrt[n]{a^4}left(frac{a+n-1}{n}right)^{n-5}+nleft(frac{a+n-1}{n}right)^{n-1}geq2((n-1)a+1),$$
which is true by AM-GM!



Indeed, let $a=x^n$.



Thus, we need to prove that
$$P(x)=x^{n^2-n}+b_1x^{n^2-n-1}+...+b_{n^2-n}geq0,$$ where only coefficient before $x^n$ is negative.



But the inequality $$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
is symmetric, which says that the polynomial $P$ is divisible by $(x-1)^2.$



Now, we see that the sum of coefficients of $P'(x)$ is equal to zero,



which says that $P(x)geq0$ by AM-GM.






share|cite|improve this answer











$endgroup$



The hint.



Prove this inequality for $n=3$ and for $n=4$.



But for all $ngeq5$ by AM-GM we obtain:
$$sum_{k=1}^na_k^3a_{k+1}geq nsqrt[n]{prod_{k=1}^na_k^4}.$$
Thus, it's enough to prove that:
$$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
Now, let $prodlimits_{k=1}^na_k=const$ and $f(x)=-frac{1}{x}.$



Thus, $$g(x)=f'left(frac{1}{x}right)=x^2$$ is strictly convex on $(0,+infty),$ which says that by Vasc's EV Method, theorem 1.3 (1), $p=0$ from here
https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/059_06.pdf



the expression $sumlimits_{k=1}^nf(x_k)=-sumlimits_{k=1}^nfrac{1}{a_k}$ gets a minimal value, when $n-1$ variables are equal.



After homogenization it's enough to assume that $a_1=a$ and $a_2=...=a_n=1$ and we need to prove that:
$$nsqrt[n]{a^4}left(frac{a+n-1}{n}right)^{n-5}+nleft(frac{a+n-1}{n}right)^{n-1}geq2((n-1)a+1),$$
which is true by AM-GM!



Indeed, let $a=x^n$.



Thus, we need to prove that
$$P(x)=x^{n^2-n}+b_1x^{n^2-n-1}+...+b_{n^2-n}geq0,$$ where only coefficient before $x^n$ is negative.



But the inequality $$nsqrt[n]{prod_{k=1}^na_k^4}+ngeq2prod_{k=1}^na_ksum_{k=1}^nfrac{1}{a_k}.$$
is symmetric, which says that the polynomial $P$ is divisible by $(x-1)^2.$



Now, we see that the sum of coefficients of $P'(x)$ is equal to zero,



which says that $P(x)geq0$ by AM-GM.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 22 at 8:55

























answered Jan 21 at 20:37









Michael RozenbergMichael Rozenberg

101k1591193




101k1591193












  • $begingroup$
    How is your last inequality true?
    $endgroup$
    – didgogns
    Jan 21 at 22:32










  • $begingroup$
    @didgogns I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 22 at 8:55






  • 1




    $begingroup$
    A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
    $endgroup$
    – didgogns
    Jan 22 at 9:07










  • $begingroup$
    but how to prove $n=3$ and $n=4$?
    $endgroup$
    – geromty
    Jan 23 at 10:31










  • $begingroup$
    @geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
    $endgroup$
    – Michael Rozenberg
    Jan 23 at 10:35




















  • $begingroup$
    How is your last inequality true?
    $endgroup$
    – didgogns
    Jan 21 at 22:32










  • $begingroup$
    @didgogns I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 22 at 8:55






  • 1




    $begingroup$
    A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
    $endgroup$
    – didgogns
    Jan 22 at 9:07










  • $begingroup$
    but how to prove $n=3$ and $n=4$?
    $endgroup$
    – geromty
    Jan 23 at 10:31










  • $begingroup$
    @geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
    $endgroup$
    – Michael Rozenberg
    Jan 23 at 10:35


















$begingroup$
How is your last inequality true?
$endgroup$
– didgogns
Jan 21 at 22:32




$begingroup$
How is your last inequality true?
$endgroup$
– didgogns
Jan 21 at 22:32












$begingroup$
@didgogns I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 22 at 8:55




$begingroup$
@didgogns I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 22 at 8:55




1




1




$begingroup$
A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
$endgroup$
– didgogns
Jan 22 at 9:07




$begingroup$
A great idea, I struggled with second derivatives and $(1+x)^nge1+xn)$ all day but this method is better!
$endgroup$
– didgogns
Jan 22 at 9:07












$begingroup$
but how to prove $n=3$ and $n=4$?
$endgroup$
– geromty
Jan 23 at 10:31




$begingroup$
but how to prove $n=3$ and $n=4$?
$endgroup$
– geromty
Jan 23 at 10:31












$begingroup$
@geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
$endgroup$
– Michael Rozenberg
Jan 23 at 10:35






$begingroup$
@geromty I proved it by BW. For $n=3$ we can use also the $uvw$'s technique, but BW is much more better here.
$endgroup$
– Michael Rozenberg
Jan 23 at 10:35













1












$begingroup$

A dull proof for $n<5$ by BW(Buffalo Way).



For $n=4$, it is enough to prove$$64(a^3b+b^3c+c^3d+d^3a)+(a+b+c+d)^2 ge 32(a+b+c+d)(abc+abd+acd+bcd)$$and WLOG we can assume $a$ is smallest of the four numbers.



That is, $b=a+u$, $c=a+v$ and $d=a+w$ for some positive numbers $u,v,w$. Expanding gives
$$64a^2(3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2)\
+16aleft(left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w right)\
+left(left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w right)ge 0$$

and each coeffcients are nonnegative. Indeed,
$$3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2 ge 2(u-w)^2+0.5(u-v)^2+0.5(v-w)^2 ge 0,$$
$$left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w\ge left(sum_{cyc} 4u^3right) + 4 u^2 v - u w^2 -7vw^2 + 11 v^2 w \ge (4u^3-uw^2+2w^3)+(4v^3+11v^2w-7vw^2+2w^3)ge 0$$
and
$$left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w\geleft(sum_{cyc} 4u^3w-13u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3w\ge v(68u^3-13u^2w-13uw^2+4w^3)+w(68v^3-13uv^2+4u^3)ge 0$$



For $n=3$, it is enough to show
$$27(a^3b+b^3c+c^3a)+(a+b+c)^4ge6(ab+bc+ca)(a+b+c)^2$$
and similarly, let $b=a+u$, $c=a+v$ and expanding gives
$$45a^2(u^2 - u v + v^2)\
+9a(3 u^3 + 5 u^2 v - 4 u v^2 + 3 v^3)\
+(u^4 + 25 u^3 v - 6 u^2 v^2 - 2 u v^3 + v^4)ge 0$$

and you can check each of these polynomials are nonnegative for positive $u, v, w$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Yes! The hardest case $ngeq5$ turned out simple.
    $endgroup$
    – Michael Rozenberg
    Jan 25 at 18:00
















1












$begingroup$

A dull proof for $n<5$ by BW(Buffalo Way).



For $n=4$, it is enough to prove$$64(a^3b+b^3c+c^3d+d^3a)+(a+b+c+d)^2 ge 32(a+b+c+d)(abc+abd+acd+bcd)$$and WLOG we can assume $a$ is smallest of the four numbers.



That is, $b=a+u$, $c=a+v$ and $d=a+w$ for some positive numbers $u,v,w$. Expanding gives
$$64a^2(3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2)\
+16aleft(left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w right)\
+left(left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w right)ge 0$$

and each coeffcients are nonnegative. Indeed,
$$3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2 ge 2(u-w)^2+0.5(u-v)^2+0.5(v-w)^2 ge 0,$$
$$left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w\ge left(sum_{cyc} 4u^3right) + 4 u^2 v - u w^2 -7vw^2 + 11 v^2 w \ge (4u^3-uw^2+2w^3)+(4v^3+11v^2w-7vw^2+2w^3)ge 0$$
and
$$left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w\geleft(sum_{cyc} 4u^3w-13u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3w\ge v(68u^3-13u^2w-13uw^2+4w^3)+w(68v^3-13uv^2+4u^3)ge 0$$



For $n=3$, it is enough to show
$$27(a^3b+b^3c+c^3a)+(a+b+c)^4ge6(ab+bc+ca)(a+b+c)^2$$
and similarly, let $b=a+u$, $c=a+v$ and expanding gives
$$45a^2(u^2 - u v + v^2)\
+9a(3 u^3 + 5 u^2 v - 4 u v^2 + 3 v^3)\
+(u^4 + 25 u^3 v - 6 u^2 v^2 - 2 u v^3 + v^4)ge 0$$

and you can check each of these polynomials are nonnegative for positive $u, v, w$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Yes! The hardest case $ngeq5$ turned out simple.
    $endgroup$
    – Michael Rozenberg
    Jan 25 at 18:00














1












1








1





$begingroup$

A dull proof for $n<5$ by BW(Buffalo Way).



For $n=4$, it is enough to prove$$64(a^3b+b^3c+c^3d+d^3a)+(a+b+c+d)^2 ge 32(a+b+c+d)(abc+abd+acd+bcd)$$and WLOG we can assume $a$ is smallest of the four numbers.



That is, $b=a+u$, $c=a+v$ and $d=a+w$ for some positive numbers $u,v,w$. Expanding gives
$$64a^2(3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2)\
+16aleft(left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w right)\
+left(left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w right)ge 0$$

and each coeffcients are nonnegative. Indeed,
$$3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2 ge 2(u-w)^2+0.5(u-v)^2+0.5(v-w)^2 ge 0,$$
$$left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w\ge left(sum_{cyc} 4u^3right) + 4 u^2 v - u w^2 -7vw^2 + 11 v^2 w \ge (4u^3-uw^2+2w^3)+(4v^3+11v^2w-7vw^2+2w^3)ge 0$$
and
$$left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w\geleft(sum_{cyc} 4u^3w-13u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3w\ge v(68u^3-13u^2w-13uw^2+4w^3)+w(68v^3-13uv^2+4u^3)ge 0$$



For $n=3$, it is enough to show
$$27(a^3b+b^3c+c^3a)+(a+b+c)^4ge6(ab+bc+ca)(a+b+c)^2$$
and similarly, let $b=a+u$, $c=a+v$ and expanding gives
$$45a^2(u^2 - u v + v^2)\
+9a(3 u^3 + 5 u^2 v - 4 u v^2 + 3 v^3)\
+(u^4 + 25 u^3 v - 6 u^2 v^2 - 2 u v^3 + v^4)ge 0$$

and you can check each of these polynomials are nonnegative for positive $u, v, w$.






share|cite|improve this answer









$endgroup$



A dull proof for $n<5$ by BW(Buffalo Way).



For $n=4$, it is enough to prove$$64(a^3b+b^3c+c^3d+d^3a)+(a+b+c+d)^2 ge 32(a+b+c+d)(abc+abd+acd+bcd)$$and WLOG we can assume $a$ is smallest of the four numbers.



That is, $b=a+u$, $c=a+v$ and $d=a+w$ for some positive numbers $u,v,w$. Expanding gives
$$64a^2(3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2)\
+16aleft(left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w right)\
+left(left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w right)ge 0$$

and each coeffcients are nonnegative. Indeed,
$$3 u^2 - u v - 4 u w + 3v^2 - v w + 3 w^2 ge 2(u-w)^2+0.5(u-v)^2+0.5(v-w)^2 ge 0,$$
$$left(sum_{cyc} 5u^3-u^2wright) + 11 u^2 v - 14 u v w - u w^2 + 11 v^2 w\ge left(sum_{cyc} 4u^3right) + 4 u^2 v - u w^2 -7vw^2 + 11 v^2 w \ge (4u^3-uw^2+2w^3)+(4v^3+11v^2w-7vw^2+2w^3)ge 0$$
and
$$left(sum_{cyc} u^4+6u^2v^2+4u^3w-20u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3 w\geleft(sum_{cyc} 4u^3w-13u^2vwright) + 68 u^3 v + 4 u w^3 + 68 v^3w\ge v(68u^3-13u^2w-13uw^2+4w^3)+w(68v^3-13uv^2+4u^3)ge 0$$



For $n=3$, it is enough to show
$$27(a^3b+b^3c+c^3a)+(a+b+c)^4ge6(ab+bc+ca)(a+b+c)^2$$
and similarly, let $b=a+u$, $c=a+v$ and expanding gives
$$45a^2(u^2 - u v + v^2)\
+9a(3 u^3 + 5 u^2 v - 4 u v^2 + 3 v^3)\
+(u^4 + 25 u^3 v - 6 u^2 v^2 - 2 u v^3 + v^4)ge 0$$

and you can check each of these polynomials are nonnegative for positive $u, v, w$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 25 at 17:03









didgognsdidgogns

3,218523




3,218523












  • $begingroup$
    Yes! The hardest case $ngeq5$ turned out simple.
    $endgroup$
    – Michael Rozenberg
    Jan 25 at 18:00


















  • $begingroup$
    Yes! The hardest case $ngeq5$ turned out simple.
    $endgroup$
    – Michael Rozenberg
    Jan 25 at 18:00
















$begingroup$
Yes! The hardest case $ngeq5$ turned out simple.
$endgroup$
– Michael Rozenberg
Jan 25 at 18:00




$begingroup$
Yes! The hardest case $ngeq5$ turned out simple.
$endgroup$
– Michael Rozenberg
Jan 25 at 18:00


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068203%2fshow-this-inequality-with-sum-i-1na-i-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith