Sum of Series Zeros Riemann function












3












$begingroup$


It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Where does it come from?
    $endgroup$
    – Seewoo Lee
    Jan 18 at 22:33






  • 2




    $begingroup$
    Is that you, Ramanujan?
    $endgroup$
    – lzralbu
    Jan 18 at 23:09










  • $begingroup$
    @Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
    $endgroup$
    – reuns
    Jan 20 at 2:19










  • $begingroup$
    @reuns what mean CAS
    $endgroup$
    – capea perez
    Jan 20 at 9:37










  • $begingroup$
    mathematica, mapple, sage, pari...
    $endgroup$
    – reuns
    Jan 22 at 13:50
















3












$begingroup$


It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Where does it come from?
    $endgroup$
    – Seewoo Lee
    Jan 18 at 22:33






  • 2




    $begingroup$
    Is that you, Ramanujan?
    $endgroup$
    – lzralbu
    Jan 18 at 23:09










  • $begingroup$
    @Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
    $endgroup$
    – reuns
    Jan 20 at 2:19










  • $begingroup$
    @reuns what mean CAS
    $endgroup$
    – capea perez
    Jan 20 at 9:37










  • $begingroup$
    mathematica, mapple, sage, pari...
    $endgroup$
    – reuns
    Jan 22 at 13:50














3












3








3





$begingroup$


It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work










share|cite|improve this question









$endgroup$




It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work







calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 18 at 20:57









capea perezcapea perez

335




335








  • 1




    $begingroup$
    Where does it come from?
    $endgroup$
    – Seewoo Lee
    Jan 18 at 22:33






  • 2




    $begingroup$
    Is that you, Ramanujan?
    $endgroup$
    – lzralbu
    Jan 18 at 23:09










  • $begingroup$
    @Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
    $endgroup$
    – reuns
    Jan 20 at 2:19










  • $begingroup$
    @reuns what mean CAS
    $endgroup$
    – capea perez
    Jan 20 at 9:37










  • $begingroup$
    mathematica, mapple, sage, pari...
    $endgroup$
    – reuns
    Jan 22 at 13:50














  • 1




    $begingroup$
    Where does it come from?
    $endgroup$
    – Seewoo Lee
    Jan 18 at 22:33






  • 2




    $begingroup$
    Is that you, Ramanujan?
    $endgroup$
    – lzralbu
    Jan 18 at 23:09










  • $begingroup$
    @Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
    $endgroup$
    – reuns
    Jan 20 at 2:19










  • $begingroup$
    @reuns what mean CAS
    $endgroup$
    – capea perez
    Jan 20 at 9:37










  • $begingroup$
    mathematica, mapple, sage, pari...
    $endgroup$
    – reuns
    Jan 22 at 13:50








1




1




$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33




$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33




2




2




$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09




$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09












$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19




$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19












$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37




$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37












$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50




$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50










1 Answer
1






active

oldest

votes


















0












$begingroup$

Iff all the zeros are simple then the residue theorem gives



$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$

$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$



$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$



$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$



Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)



The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$



$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
    $endgroup$
    – reuns
    Jan 19 at 2:17











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078738%2fsum-of-series-zeros-riemann-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Iff all the zeros are simple then the residue theorem gives



$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$

$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$



$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$



$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$



Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)



The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$



$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
    $endgroup$
    – reuns
    Jan 19 at 2:17
















0












$begingroup$

Iff all the zeros are simple then the residue theorem gives



$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$

$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$



$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$



$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$



Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)



The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$



$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
    $endgroup$
    – reuns
    Jan 19 at 2:17














0












0








0





$begingroup$

Iff all the zeros are simple then the residue theorem gives



$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$

$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$



$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$



$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$



Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)



The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$



$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$






share|cite|improve this answer











$endgroup$



Iff all the zeros are simple then the residue theorem gives



$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$

$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$



$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$



$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$



Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)



The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$



$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 19 at 3:43

























answered Jan 19 at 2:09









reunsreuns

20.7k21148




20.7k21148












  • $begingroup$
    See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
    $endgroup$
    – reuns
    Jan 19 at 2:17


















  • $begingroup$
    See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
    $endgroup$
    – reuns
    Jan 19 at 2:17
















$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17




$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078738%2fsum-of-series-zeros-riemann-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

Npm cannot find a required file even through it is in the searched directory