Sum of Series Zeros Riemann function
$begingroup$
It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work
calculus
$endgroup$
|
show 1 more comment
$begingroup$
It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work
calculus
$endgroup$
1
$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33
2
$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09
$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19
$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37
$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50
|
show 1 more comment
$begingroup$
It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work
calculus
$endgroup$
It is posible to prove the equality of the following series
$$-sum _{k=1}^{infty } left(frac{2^{2 k+1} pi ^{2 k}}{4 k^2 (k+2) (-1)^k (2 k)! zeta (2 k+1)}+frac{4}{2 left(rho _k-4right) left(rho _kright){}^2 zeta 'left(rho _kright)}right)+frac{1}{4}+frac{45}{4 pi ^4}=log (2 pi )$$ Numerically for a few Zeros it seem to work
calculus
calculus
asked Jan 18 at 20:57


capea perezcapea perez
335
335
1
$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33
2
$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09
$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19
$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37
$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50
|
show 1 more comment
1
$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33
2
$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09
$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19
$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37
$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50
1
1
$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33
$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33
2
2
$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09
$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09
$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19
$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19
$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37
$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37
$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50
$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
Iff all the zeros are simple then the residue theorem gives
$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$
$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$
Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)
The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$
$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$
$endgroup$
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078738%2fsum-of-series-zeros-riemann-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Iff all the zeros are simple then the residue theorem gives
$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$
$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$
Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)
The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$
$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$
$endgroup$
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
add a comment |
$begingroup$
Iff all the zeros are simple then the residue theorem gives
$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$
$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$
Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)
The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$
$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$
$endgroup$
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
add a comment |
$begingroup$
Iff all the zeros are simple then the residue theorem gives
$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$
$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$
Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)
The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$
$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$
$endgroup$
Iff all the zeros are simple then the residue theorem gives
$$0=lim_{sigmato infty} frac{1}{2ipi}int_{sigma-iinfty}^{sigma+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds=frac{1}{2ipi}int_{5-iinfty}^{5+iinfty} frac{1}{zeta(s)} frac1{(s-4)s^2}ds$$ $$ =
Res_{s=0}(frac{1}{zeta(s)} frac1{(s-4)s^2})+Res_{s=4}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$+sum_rho Res_{s=rho}(frac{1}{zeta(s)} frac1{(s-4)s^2})+sum_{k=1}^infty Res_{s=-2k}(frac{1}{zeta(s)} frac1{(s-4)s^2})$$
$$ = frac{1}{zeta(0)(-4)}-frac{1}{zeta(0)(-4)^2}-frac{zeta'(0)}{zeta(0)^2(-4)}+frac{1}{zeta(4) 4^2}$$
$$ + sum_rho frac{1}{zeta'(rho)} frac1{(rho-4)rho^2}+sum_{k=1}^infty frac{1}{zeta'(-2k)} frac1{(-2k-4)(-2k)^2}$$
Proving the convergence of the series over the non-trivial zeros needs a lot of estimates (density of zeros, Phragmén–Lindelöf, Hadamard 3 circles...)
The functional equation is $zeta(s) = chi(s) zeta(1-s)$ with the closed-form for $chi'(s)$ we have $$zeta'(-2k) = chi'(-2k)zeta(2k+1)= (-1)^k frac {(2k)!} {2 (2pi)^{2k}} zeta (2k+1)$$
$$frac{zeta'(0)}{zeta(0)} = log (2pi)$$
edited Jan 19 at 3:43
answered Jan 19 at 2:09
reunsreuns
20.7k21148
20.7k21148
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
add a comment |
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
$begingroup$
See also en.wikipedia.org/wiki/Riesz_function for how to see the Riemann hypothesis in those kind of series over the trivial zeros
$endgroup$
– reuns
Jan 19 at 2:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078738%2fsum-of-series-zeros-riemann-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Where does it come from?
$endgroup$
– Seewoo Lee
Jan 18 at 22:33
2
$begingroup$
Is that you, Ramanujan?
$endgroup$
– lzralbu
Jan 18 at 23:09
$begingroup$
@Capea If you don't explain with which CAS and formulas you are playing we can't help you. In this form your questions do not fit the requirements of a math website.
$endgroup$
– reuns
Jan 20 at 2:19
$begingroup$
@reuns what mean CAS
$endgroup$
– capea perez
Jan 20 at 9:37
$begingroup$
mathematica, mapple, sage, pari...
$endgroup$
– reuns
Jan 22 at 13:50