Why is $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
$begingroup$
Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
My calculation:
$int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$
and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$
Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$
In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
Where am I going wrong?
integration complex-numbers
$endgroup$
add a comment |
$begingroup$
Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
My calculation:
$int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$
and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$
Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$
In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
Where am I going wrong?
integration complex-numbers
$endgroup$
add a comment |
$begingroup$
Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
My calculation:
$int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$
and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$
Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$
In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
Where am I going wrong?
integration complex-numbers
$endgroup$
Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
My calculation:
$int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$
and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$
Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$
In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$
Where am I going wrong?
integration complex-numbers
integration complex-numbers
edited Jan 11 at 1:54


T. Bongers
23.1k54662
23.1k54662
asked Jan 10 at 23:23
MinaThumaMinaThuma
1108
1108
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You dropped a $y+i$ factor before "now".
$endgroup$
add a comment |
$begingroup$
I get
$$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
Here a way using partial integration twice:
With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
begin{eqnarray*} I(y)
& = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
& = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
& = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
end{eqnarray*}
It follows
$$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069303%2fwhy-is-int-e-xy-sinx-dx-frace-xyy-sinx-cosx1y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You dropped a $y+i$ factor before "now".
$endgroup$
add a comment |
$begingroup$
You dropped a $y+i$ factor before "now".
$endgroup$
add a comment |
$begingroup$
You dropped a $y+i$ factor before "now".
$endgroup$
You dropped a $y+i$ factor before "now".
answered Jan 10 at 23:26
J.G.J.G.
25.7k22539
25.7k22539
add a comment |
add a comment |
$begingroup$
I get
$$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
Here a way using partial integration twice:
With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
begin{eqnarray*} I(y)
& = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
& = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
& = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
end{eqnarray*}
It follows
$$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$
$endgroup$
add a comment |
$begingroup$
I get
$$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
Here a way using partial integration twice:
With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
begin{eqnarray*} I(y)
& = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
& = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
& = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
end{eqnarray*}
It follows
$$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$
$endgroup$
add a comment |
$begingroup$
I get
$$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
Here a way using partial integration twice:
With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
begin{eqnarray*} I(y)
& = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
& = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
& = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
end{eqnarray*}
It follows
$$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$
$endgroup$
I get
$$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
Here a way using partial integration twice:
With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
begin{eqnarray*} I(y)
& = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
& = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
& = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
end{eqnarray*}
It follows
$$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$
answered Jan 11 at 11:26
trancelocationtrancelocation
10.9k1723
10.9k1723
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069303%2fwhy-is-int-e-xy-sinx-dx-frace-xyy-sinx-cosx1y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown