Why is $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$












0












$begingroup$


Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



My calculation:



$int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$



and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$



Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$



In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



Where am I going wrong?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



    My calculation:



    $int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$



    and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$



    Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$



    In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



    Where am I going wrong?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



      My calculation:



      $int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$



      and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$



      Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$



      In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



      Where am I going wrong?










      share|cite|improve this question











      $endgroup$




      Why would $int e^{-xy}sin{x} dx = frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



      My calculation:



      $int e^{-xy}sin{x} dx=Imint e^{-xy}(cos{x}+isin{x})dx$



      and $int e^{-xy}(cos{x}+isin{x})dx=-frac{1}{y-i}e^{x(i-y)}=-frac{1}{y^2+1}e^{x(i-y)}$



      Now $Im -frac{1}{y^2+1}e^{x(i-y)}=Im-frac{e^{-xy}}{y^{2}+1}(cos{x}+isin{x})=-frac{e^{-xy}}{y^{2}+1}sin{x}$



      In the solutions, it says: $int e^{-xy}sin{x} dx=frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2}$



      Where am I going wrong?







      integration complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 1:54









      T. Bongers

      23.1k54662




      23.1k54662










      asked Jan 10 at 23:23









      MinaThumaMinaThuma

      1108




      1108






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          You dropped a $y+i$ factor before "now".






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            I get
            $$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
            Here a way using partial integration twice:



            With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
            begin{eqnarray*} I(y)
            & = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
            & = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
            & = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
            end{eqnarray*}

            It follows
            $$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069303%2fwhy-is-int-e-xy-sinx-dx-frace-xyy-sinx-cosx1y2%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              You dropped a $y+i$ factor before "now".






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                You dropped a $y+i$ factor before "now".






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  You dropped a $y+i$ factor before "now".






                  share|cite|improve this answer









                  $endgroup$



                  You dropped a $y+i$ factor before "now".







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 10 at 23:26









                  J.G.J.G.

                  25.7k22539




                  25.7k22539























                      0












                      $begingroup$

                      I get
                      $$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
                      Here a way using partial integration twice:



                      With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
                      begin{eqnarray*} I(y)
                      & = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
                      & = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
                      & = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
                      end{eqnarray*}

                      It follows
                      $$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        I get
                        $$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
                        Here a way using partial integration twice:



                        With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
                        begin{eqnarray*} I(y)
                        & = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
                        & = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
                        & = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
                        end{eqnarray*}

                        It follows
                        $$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          I get
                          $$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
                          Here a way using partial integration twice:



                          With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
                          begin{eqnarray*} I(y)
                          & = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
                          & = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
                          & = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
                          end{eqnarray*}

                          It follows
                          $$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$






                          share|cite|improve this answer









                          $endgroup$



                          I get
                          $$int e^{-xy}sin{x}; dx = color{red}{-}frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)$$
                          Here a way using partial integration twice:



                          With $I(y) = int underbrace{e^{-xy}}_{u}underbrace{sin{x}}_{v'};dx$ you get
                          begin{eqnarray*} I(y)
                          & = & -e^{-xy}cos x - y int e^{-xy}cos{x} ; dx \
                          & = & -e^{-xy}cos x - y left(e^{-xy} sin x + y underbrace{int e^{-xy}sin{x} ; dx }_{= I(y)}right)\
                          & = & -e^{-xy}cos x - ye^{-xy} sin x - y^2 I(y)\
                          end{eqnarray*}

                          It follows
                          $$(1+y^2)I(y) = - -e^{-xy}(cos x +y sin x) Leftrightarrow boxed{I(y) = -frac{e^{-xy}(ysin{x}+cos{x})}{1+y^2} (+C)}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 11 at 11:26









                          trancelocationtrancelocation

                          10.9k1723




                          10.9k1723






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069303%2fwhy-is-int-e-xy-sinx-dx-frace-xyy-sinx-cosx1y2%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              How to fix TextFormField cause rebuild widget in Flutter