A second order differential equations with initial conditions solved using Laplace Transforms
$begingroup$
Below is a problem I did from the book Differential Equations by K.A. Stroud and Dexter Booth. I got the right answer but I am not sure I did it right especially when I took the inverse Laplace Transform. Therefore, I am hoping that somebody here can check it for me.
Thanks,
Bob
Problem:
Solve the following differential equation:
$$ f''(x) - 5f'(x) + 6f(x) = e^{2x} text{ where } f(0) = 0 text{ and } f'(0) = 0 $$
newline
Answer:
To solve this equation, I am going to use the Laplace transform.
begin{align*}
s^2F(s) - sf(0) - f'(0) - 5(sF(s) - f(0)) + 6F(s) &= frac{1}{s-2} \
s^2F(s) - 5(sF(s)) + 6F(s) &= frac{1}{s-2} \
(s^2-5s+6)F(s) &= frac{1}{s-2} \
F(s) &= frac{1}{(s-2)^2(s-3)} \
end{align*}
Now we apply the technique of partial fractions to find $f(x)$.
begin{align*}
frac{1}{(s-2)^2(s-3)} &= frac{A}{s-2} + frac{B}{(s-2)^2} + frac{C}{s-3} \
1 &= A(s-2)(s-3) + B(s-3) + C(s-2)^2 \
end{align*}
At $s = 2$ we have: $1 = B(2-3) = -B$ or $B = -1$. At $s =3$ we haveL $1 = C(3-2)^2 = C = 1$.
begin{align*}
A(s-2)(s-3) - (s-3) + (s-2)^2 &= 1 \
A + 1 &= 0 \
A &= -1 \
end{align*}
begin{align*}
F(s) &= frac{-1}{s-2} - frac{1}{(s-2)^2} + frac{1}{s-3} \
mathcal{L}^{-1}left( frac{1}{s-2} right) &= e^{-2x} \
end{align*}
Now, we need to find the inverse Laplace transform of:
$$ frac{1}{(s-2)^2} $$
Recall that if $mathcal{L}(f(t)) = F(s)$ then $mathcal{L}(e^{at}f(t)) = F(s-a)$
In this case, we use $a = 2$, $f(t) = x$ and $F(s) = frac{1}{s^2}$.
begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}
ordinary-differential-equations laplace-transform
$endgroup$
add a comment |
$begingroup$
Below is a problem I did from the book Differential Equations by K.A. Stroud and Dexter Booth. I got the right answer but I am not sure I did it right especially when I took the inverse Laplace Transform. Therefore, I am hoping that somebody here can check it for me.
Thanks,
Bob
Problem:
Solve the following differential equation:
$$ f''(x) - 5f'(x) + 6f(x) = e^{2x} text{ where } f(0) = 0 text{ and } f'(0) = 0 $$
newline
Answer:
To solve this equation, I am going to use the Laplace transform.
begin{align*}
s^2F(s) - sf(0) - f'(0) - 5(sF(s) - f(0)) + 6F(s) &= frac{1}{s-2} \
s^2F(s) - 5(sF(s)) + 6F(s) &= frac{1}{s-2} \
(s^2-5s+6)F(s) &= frac{1}{s-2} \
F(s) &= frac{1}{(s-2)^2(s-3)} \
end{align*}
Now we apply the technique of partial fractions to find $f(x)$.
begin{align*}
frac{1}{(s-2)^2(s-3)} &= frac{A}{s-2} + frac{B}{(s-2)^2} + frac{C}{s-3} \
1 &= A(s-2)(s-3) + B(s-3) + C(s-2)^2 \
end{align*}
At $s = 2$ we have: $1 = B(2-3) = -B$ or $B = -1$. At $s =3$ we haveL $1 = C(3-2)^2 = C = 1$.
begin{align*}
A(s-2)(s-3) - (s-3) + (s-2)^2 &= 1 \
A + 1 &= 0 \
A &= -1 \
end{align*}
begin{align*}
F(s) &= frac{-1}{s-2} - frac{1}{(s-2)^2} + frac{1}{s-3} \
mathcal{L}^{-1}left( frac{1}{s-2} right) &= e^{-2x} \
end{align*}
Now, we need to find the inverse Laplace transform of:
$$ frac{1}{(s-2)^2} $$
Recall that if $mathcal{L}(f(t)) = F(s)$ then $mathcal{L}(e^{at}f(t)) = F(s-a)$
In this case, we use $a = 2$, $f(t) = x$ and $F(s) = frac{1}{s^2}$.
begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}
ordinary-differential-equations laplace-transform
$endgroup$
add a comment |
$begingroup$
Below is a problem I did from the book Differential Equations by K.A. Stroud and Dexter Booth. I got the right answer but I am not sure I did it right especially when I took the inverse Laplace Transform. Therefore, I am hoping that somebody here can check it for me.
Thanks,
Bob
Problem:
Solve the following differential equation:
$$ f''(x) - 5f'(x) + 6f(x) = e^{2x} text{ where } f(0) = 0 text{ and } f'(0) = 0 $$
newline
Answer:
To solve this equation, I am going to use the Laplace transform.
begin{align*}
s^2F(s) - sf(0) - f'(0) - 5(sF(s) - f(0)) + 6F(s) &= frac{1}{s-2} \
s^2F(s) - 5(sF(s)) + 6F(s) &= frac{1}{s-2} \
(s^2-5s+6)F(s) &= frac{1}{s-2} \
F(s) &= frac{1}{(s-2)^2(s-3)} \
end{align*}
Now we apply the technique of partial fractions to find $f(x)$.
begin{align*}
frac{1}{(s-2)^2(s-3)} &= frac{A}{s-2} + frac{B}{(s-2)^2} + frac{C}{s-3} \
1 &= A(s-2)(s-3) + B(s-3) + C(s-2)^2 \
end{align*}
At $s = 2$ we have: $1 = B(2-3) = -B$ or $B = -1$. At $s =3$ we haveL $1 = C(3-2)^2 = C = 1$.
begin{align*}
A(s-2)(s-3) - (s-3) + (s-2)^2 &= 1 \
A + 1 &= 0 \
A &= -1 \
end{align*}
begin{align*}
F(s) &= frac{-1}{s-2} - frac{1}{(s-2)^2} + frac{1}{s-3} \
mathcal{L}^{-1}left( frac{1}{s-2} right) &= e^{-2x} \
end{align*}
Now, we need to find the inverse Laplace transform of:
$$ frac{1}{(s-2)^2} $$
Recall that if $mathcal{L}(f(t)) = F(s)$ then $mathcal{L}(e^{at}f(t)) = F(s-a)$
In this case, we use $a = 2$, $f(t) = x$ and $F(s) = frac{1}{s^2}$.
begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}
ordinary-differential-equations laplace-transform
$endgroup$
Below is a problem I did from the book Differential Equations by K.A. Stroud and Dexter Booth. I got the right answer but I am not sure I did it right especially when I took the inverse Laplace Transform. Therefore, I am hoping that somebody here can check it for me.
Thanks,
Bob
Problem:
Solve the following differential equation:
$$ f''(x) - 5f'(x) + 6f(x) = e^{2x} text{ where } f(0) = 0 text{ and } f'(0) = 0 $$
newline
Answer:
To solve this equation, I am going to use the Laplace transform.
begin{align*}
s^2F(s) - sf(0) - f'(0) - 5(sF(s) - f(0)) + 6F(s) &= frac{1}{s-2} \
s^2F(s) - 5(sF(s)) + 6F(s) &= frac{1}{s-2} \
(s^2-5s+6)F(s) &= frac{1}{s-2} \
F(s) &= frac{1}{(s-2)^2(s-3)} \
end{align*}
Now we apply the technique of partial fractions to find $f(x)$.
begin{align*}
frac{1}{(s-2)^2(s-3)} &= frac{A}{s-2} + frac{B}{(s-2)^2} + frac{C}{s-3} \
1 &= A(s-2)(s-3) + B(s-3) + C(s-2)^2 \
end{align*}
At $s = 2$ we have: $1 = B(2-3) = -B$ or $B = -1$. At $s =3$ we haveL $1 = C(3-2)^2 = C = 1$.
begin{align*}
A(s-2)(s-3) - (s-3) + (s-2)^2 &= 1 \
A + 1 &= 0 \
A &= -1 \
end{align*}
begin{align*}
F(s) &= frac{-1}{s-2} - frac{1}{(s-2)^2} + frac{1}{s-3} \
mathcal{L}^{-1}left( frac{1}{s-2} right) &= e^{-2x} \
end{align*}
Now, we need to find the inverse Laplace transform of:
$$ frac{1}{(s-2)^2} $$
Recall that if $mathcal{L}(f(t)) = F(s)$ then $mathcal{L}(e^{at}f(t)) = F(s-a)$
In this case, we use $a = 2$, $f(t) = x$ and $F(s) = frac{1}{s^2}$.
begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}
ordinary-differential-equations laplace-transform
ordinary-differential-equations laplace-transform
edited Jan 20 at 1:25
Bob
asked Jan 19 at 23:57
BobBob
923515
923515
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Please check your work and make sure that the exponents are typed corrrectly. $$begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}$$
While your first and second line above are correct, the third line has negative numbers in the exponents.
Over all your work is correct and once you take care of the typos, everything should be fine.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079989%2fa-second-order-differential-equations-with-initial-conditions-solved-using-lapla%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Please check your work and make sure that the exponents are typed corrrectly. $$begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}$$
While your first and second line above are correct, the third line has negative numbers in the exponents.
Over all your work is correct and once you take care of the typos, everything should be fine.
$endgroup$
add a comment |
$begingroup$
Please check your work and make sure that the exponents are typed corrrectly. $$begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}$$
While your first and second line above are correct, the third line has negative numbers in the exponents.
Over all your work is correct and once you take care of the typos, everything should be fine.
$endgroup$
add a comment |
$begingroup$
Please check your work and make sure that the exponents are typed corrrectly. $$begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}$$
While your first and second line above are correct, the third line has negative numbers in the exponents.
Over all your work is correct and once you take care of the typos, everything should be fine.
$endgroup$
Please check your work and make sure that the exponents are typed corrrectly. $$begin{align*}
mathcal{L}^{-1}left( frac{1}{(s-2)^2} right) &= xe^{2x} \
mathcal{L}^{-1}left( frac{1}{s-3} right) &= e^{3x} \
f(x) &= -e^{-2x} - xe^{-2x} + e^{3x} \
f(x) &= e^{3x} - (x+1 )e^{2x} \
end{align*}$$
While your first and second line above are correct, the third line has negative numbers in the exponents.
Over all your work is correct and once you take care of the typos, everything should be fine.
answered Jan 20 at 1:39


Mohammad Riazi-KermaniMohammad Riazi-Kermani
41.6k42061
41.6k42061
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079989%2fa-second-order-differential-equations-with-initial-conditions-solved-using-lapla%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown