How to show $text{Tr}(Mlog N)=sum_{i,j}^nlambda_ilog(tilde{lambda_j})(u_i^{top}tilde{u}_j)^2$?
$begingroup$
The above question is the equation $(2.4)$ of the following paper:
MATRIX EXPONENTIATED GRADIENT UPDATES.
Let $M$ and $N$ be two $n times n$ positive definite matrices where $M=ULambda U^{top}$, $N=tilde{U}tilde{Lambda} tilde{U}^{top}
$ and $(lambda_i,v_i)$ are eigenpairs of $M$, likewise for $N$.
How to show the following
$$text{Tr}(Mlog N)=sum_{i,j}lambda_ilog(tilde{lambda_j})(u_i^{top}tilde{u}_j)^2$$
First I do not know what $i,j$ mean in summation, and how we have it using two summations. Second how to get that.
My try:
begin{align}
text{Tr}(Mlog N) &=
text{Tr}(ULambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}) \
& = text{Tr}(Lambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}U)
end{align}
How can I proceed using matrix calculus to get the result not by expanding? what is the hidden trick?
linear-algebra matrices positive-definite symmetric-matrices
$endgroup$
add a comment |
$begingroup$
The above question is the equation $(2.4)$ of the following paper:
MATRIX EXPONENTIATED GRADIENT UPDATES.
Let $M$ and $N$ be two $n times n$ positive definite matrices where $M=ULambda U^{top}$, $N=tilde{U}tilde{Lambda} tilde{U}^{top}
$ and $(lambda_i,v_i)$ are eigenpairs of $M$, likewise for $N$.
How to show the following
$$text{Tr}(Mlog N)=sum_{i,j}lambda_ilog(tilde{lambda_j})(u_i^{top}tilde{u}_j)^2$$
First I do not know what $i,j$ mean in summation, and how we have it using two summations. Second how to get that.
My try:
begin{align}
text{Tr}(Mlog N) &=
text{Tr}(ULambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}) \
& = text{Tr}(Lambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}U)
end{align}
How can I proceed using matrix calculus to get the result not by expanding? what is the hidden trick?
linear-algebra matrices positive-definite symmetric-matrices
$endgroup$
add a comment |
$begingroup$
The above question is the equation $(2.4)$ of the following paper:
MATRIX EXPONENTIATED GRADIENT UPDATES.
Let $M$ and $N$ be two $n times n$ positive definite matrices where $M=ULambda U^{top}$, $N=tilde{U}tilde{Lambda} tilde{U}^{top}
$ and $(lambda_i,v_i)$ are eigenpairs of $M$, likewise for $N$.
How to show the following
$$text{Tr}(Mlog N)=sum_{i,j}lambda_ilog(tilde{lambda_j})(u_i^{top}tilde{u}_j)^2$$
First I do not know what $i,j$ mean in summation, and how we have it using two summations. Second how to get that.
My try:
begin{align}
text{Tr}(Mlog N) &=
text{Tr}(ULambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}) \
& = text{Tr}(Lambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}U)
end{align}
How can I proceed using matrix calculus to get the result not by expanding? what is the hidden trick?
linear-algebra matrices positive-definite symmetric-matrices
$endgroup$
The above question is the equation $(2.4)$ of the following paper:
MATRIX EXPONENTIATED GRADIENT UPDATES.
Let $M$ and $N$ be two $n times n$ positive definite matrices where $M=ULambda U^{top}$, $N=tilde{U}tilde{Lambda} tilde{U}^{top}
$ and $(lambda_i,v_i)$ are eigenpairs of $M$, likewise for $N$.
How to show the following
$$text{Tr}(Mlog N)=sum_{i,j}lambda_ilog(tilde{lambda_j})(u_i^{top}tilde{u}_j)^2$$
First I do not know what $i,j$ mean in summation, and how we have it using two summations. Second how to get that.
My try:
begin{align}
text{Tr}(Mlog N) &=
text{Tr}(ULambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}) \
& = text{Tr}(Lambda U^{top}
tilde{U}log(tilde{Lambda})tilde{U}^{top}U)
end{align}
How can I proceed using matrix calculus to get the result not by expanding? what is the hidden trick?
linear-algebra matrices positive-definite symmetric-matrices
linear-algebra matrices positive-definite symmetric-matrices
edited Jan 20 at 3:36
loup blanc
23.5k21851
23.5k21851
asked Jan 18 at 20:17
SaeedSaeed
1,073310
1,073310
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
To easy the notations, let us take
$$
kappa_j=logtilde{lambda}_j
$$
and
$$
v_j=tilde{u}_j.
$$
With these notations, it suffices to show
$$
text{tr}left(Mlog Nright)=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
$$
Now, let us begin our proof. Using
begin{align}
M&=sum_{j=1}^nlambda_ju_ju_j^{top},\
N&=sum_{j=1}^nkappa_jv_jv_j^{top},
end{align}
we have
begin{align}
text{tr}left(Mlog Nright)&=text{tr}left(sum_{i=1}^nlambda_iu_iu_i^{top}sum_{j=1}^nkappa_jv_jv_j^{top}right)\
&=text{tr}left(sum_{i,j=1}^nlambda_ikappa_ju_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(u_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(v_j^{top}u_iu_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(v_j^{top}u_iright)left(u_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
end{align}
This completes the proof.
I would like to thank @loupblanc for kind advices.
$endgroup$
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
add a comment |
$begingroup$
The first version of the formula with one index is false. Take $M=begin{pmatrix}50&37\37&61end{pmatrix},N=diag(2,1)$.
$endgroup$
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078707%2fhow-to-show-texttrm-log-n-sum-i-jn-lambda-i-log-tilde-lambda-ju-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To easy the notations, let us take
$$
kappa_j=logtilde{lambda}_j
$$
and
$$
v_j=tilde{u}_j.
$$
With these notations, it suffices to show
$$
text{tr}left(Mlog Nright)=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
$$
Now, let us begin our proof. Using
begin{align}
M&=sum_{j=1}^nlambda_ju_ju_j^{top},\
N&=sum_{j=1}^nkappa_jv_jv_j^{top},
end{align}
we have
begin{align}
text{tr}left(Mlog Nright)&=text{tr}left(sum_{i=1}^nlambda_iu_iu_i^{top}sum_{j=1}^nkappa_jv_jv_j^{top}right)\
&=text{tr}left(sum_{i,j=1}^nlambda_ikappa_ju_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(u_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(v_j^{top}u_iu_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(v_j^{top}u_iright)left(u_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
end{align}
This completes the proof.
I would like to thank @loupblanc for kind advices.
$endgroup$
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
add a comment |
$begingroup$
To easy the notations, let us take
$$
kappa_j=logtilde{lambda}_j
$$
and
$$
v_j=tilde{u}_j.
$$
With these notations, it suffices to show
$$
text{tr}left(Mlog Nright)=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
$$
Now, let us begin our proof. Using
begin{align}
M&=sum_{j=1}^nlambda_ju_ju_j^{top},\
N&=sum_{j=1}^nkappa_jv_jv_j^{top},
end{align}
we have
begin{align}
text{tr}left(Mlog Nright)&=text{tr}left(sum_{i=1}^nlambda_iu_iu_i^{top}sum_{j=1}^nkappa_jv_jv_j^{top}right)\
&=text{tr}left(sum_{i,j=1}^nlambda_ikappa_ju_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(u_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(v_j^{top}u_iu_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(v_j^{top}u_iright)left(u_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
end{align}
This completes the proof.
I would like to thank @loupblanc for kind advices.
$endgroup$
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
add a comment |
$begingroup$
To easy the notations, let us take
$$
kappa_j=logtilde{lambda}_j
$$
and
$$
v_j=tilde{u}_j.
$$
With these notations, it suffices to show
$$
text{tr}left(Mlog Nright)=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
$$
Now, let us begin our proof. Using
begin{align}
M&=sum_{j=1}^nlambda_ju_ju_j^{top},\
N&=sum_{j=1}^nkappa_jv_jv_j^{top},
end{align}
we have
begin{align}
text{tr}left(Mlog Nright)&=text{tr}left(sum_{i=1}^nlambda_iu_iu_i^{top}sum_{j=1}^nkappa_jv_jv_j^{top}right)\
&=text{tr}left(sum_{i,j=1}^nlambda_ikappa_ju_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(u_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(v_j^{top}u_iu_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(v_j^{top}u_iright)left(u_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
end{align}
This completes the proof.
I would like to thank @loupblanc for kind advices.
$endgroup$
To easy the notations, let us take
$$
kappa_j=logtilde{lambda}_j
$$
and
$$
v_j=tilde{u}_j.
$$
With these notations, it suffices to show
$$
text{tr}left(Mlog Nright)=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
$$
Now, let us begin our proof. Using
begin{align}
M&=sum_{j=1}^nlambda_ju_ju_j^{top},\
N&=sum_{j=1}^nkappa_jv_jv_j^{top},
end{align}
we have
begin{align}
text{tr}left(Mlog Nright)&=text{tr}left(sum_{i=1}^nlambda_iu_iu_i^{top}sum_{j=1}^nkappa_jv_jv_j^{top}right)\
&=text{tr}left(sum_{i,j=1}^nlambda_ikappa_ju_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(u_iu_i^{top}v_jv_j^{top}right)\
&=sum_{i,j=1}^nlambda_ikappa_jtext{tr}left(v_j^{top}u_iu_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(v_j^{top}u_iright)left(u_i^{top}v_jright)\
&=sum_{i,j=1}^nlambda_ikappa_jleft(u_i^{top}v_jright)^2.
end{align}
This completes the proof.
I would like to thank @loupblanc for kind advices.
edited Jan 20 at 5:10
answered Jan 20 at 1:42
hypernovahypernova
4,834414
4,834414
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
add a comment |
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
Your proof is correct. 2 remarks: i) write $log(N)=cdots$ and ii) using Frobenius is useless because $u_i^Tv_j=v_j^Tu_i$.
$endgroup$
– loup blanc
Jan 20 at 3:35
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@hypernova: Does the summation have $n^2$ terms?
$endgroup$
– Saeed
Jan 20 at 4:27
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@loupblanc: Thank you for your advices. I modified my answer as per your suggestions, credited to you.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
$begingroup$
@Saeed: Yes, the summation contains $n^2$ terms, and each of the indices $i$ and $j$ runs from $1$ to $n$. In other words, $sum_{i,j=1}^n=sum_{i=1}^nsum_{j=1}^n$.
$endgroup$
– hypernova
Jan 20 at 5:11
add a comment |
$begingroup$
The first version of the formula with one index is false. Take $M=begin{pmatrix}50&37\37&61end{pmatrix},N=diag(2,1)$.
$endgroup$
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
add a comment |
$begingroup$
The first version of the formula with one index is false. Take $M=begin{pmatrix}50&37\37&61end{pmatrix},N=diag(2,1)$.
$endgroup$
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
add a comment |
$begingroup$
The first version of the formula with one index is false. Take $M=begin{pmatrix}50&37\37&61end{pmatrix},N=diag(2,1)$.
$endgroup$
The first version of the formula with one index is false. Take $M=begin{pmatrix}50&37\37&61end{pmatrix},N=diag(2,1)$.
edited Jan 20 at 3:41
answered Jan 19 at 10:04
loup blancloup blanc
23.5k21851
23.5k21851
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
add a comment |
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
It is on page 999 of the following paper jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf. Maybe I am wrong. Because I am confused about $i$ and $j$.
$endgroup$
– Saeed
Jan 20 at 1:29
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
$begingroup$
Yes, the correct formula is a sum with $2$ indices.
$endgroup$
– loup blanc
Jan 20 at 3:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078707%2fhow-to-show-texttrm-log-n-sum-i-jn-lambda-i-log-tilde-lambda-ju-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown