How to compute $u_x(sqrt {(x^2+y^2)})=$?
$begingroup$
This is in reference to this question
$g(z) = f(|z|)$ is not holomorphic for a non constant function $f$
If $u$ is a function of single variable $x$ and if I want to differentiate $u(sqrt {(x^2+y^2)}$ with respect to $x$
then what will be $u_x(sqrt {(x^2+y^2)})=$?
It is given in the question that linked above
that $u_x(sqrt {(x^2+y^2)})=u_xtimes frac{x}{sqrt {(x^2+y^2)}}$ but If I take $u(x)=x^2+x$ then it becomes false
What is the correct way to solve it?
Any help.
complex-analysis derivatives pde
$endgroup$
add a comment |
$begingroup$
This is in reference to this question
$g(z) = f(|z|)$ is not holomorphic for a non constant function $f$
If $u$ is a function of single variable $x$ and if I want to differentiate $u(sqrt {(x^2+y^2)}$ with respect to $x$
then what will be $u_x(sqrt {(x^2+y^2)})=$?
It is given in the question that linked above
that $u_x(sqrt {(x^2+y^2)})=u_xtimes frac{x}{sqrt {(x^2+y^2)}}$ but If I take $u(x)=x^2+x$ then it becomes false
What is the correct way to solve it?
Any help.
complex-analysis derivatives pde
$endgroup$
add a comment |
$begingroup$
This is in reference to this question
$g(z) = f(|z|)$ is not holomorphic for a non constant function $f$
If $u$ is a function of single variable $x$ and if I want to differentiate $u(sqrt {(x^2+y^2)}$ with respect to $x$
then what will be $u_x(sqrt {(x^2+y^2)})=$?
It is given in the question that linked above
that $u_x(sqrt {(x^2+y^2)})=u_xtimes frac{x}{sqrt {(x^2+y^2)}}$ but If I take $u(x)=x^2+x$ then it becomes false
What is the correct way to solve it?
Any help.
complex-analysis derivatives pde
$endgroup$
This is in reference to this question
$g(z) = f(|z|)$ is not holomorphic for a non constant function $f$
If $u$ is a function of single variable $x$ and if I want to differentiate $u(sqrt {(x^2+y^2)}$ with respect to $x$
then what will be $u_x(sqrt {(x^2+y^2)})=$?
It is given in the question that linked above
that $u_x(sqrt {(x^2+y^2)})=u_xtimes frac{x}{sqrt {(x^2+y^2)}}$ but If I take $u(x)=x^2+x$ then it becomes false
What is the correct way to solve it?
Any help.
complex-analysis derivatives pde
complex-analysis derivatives pde
asked Jan 20 at 5:19
user596656
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
What happens when I do this with $u(x)=x^2+x$. Write
$$f(x,y)=uleft(sqrt{x^2+y^2}right)=x^2+y^2+sqrt{x^2+y^2}.$$
Then
$$fracpartial{partial x}f(x,y)=2x+frac{x}{sqrt{x^2+y^2}}.$$
But $u'(x)=2x+1$, and
$$u'left(sqrt{x^2+y^2}right)fracpartial{partial x}sqrt{x^2+y^2}
=left(2sqrt{x^2+y^2}+1right)frac{x}{sqrt{x^2+y^2}}
=2x+frac{x}{sqrt{x^2+y^2}}.$$
I don't see any problem....
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080218%2fhow-to-compute-u-x-sqrt-x2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
What happens when I do this with $u(x)=x^2+x$. Write
$$f(x,y)=uleft(sqrt{x^2+y^2}right)=x^2+y^2+sqrt{x^2+y^2}.$$
Then
$$fracpartial{partial x}f(x,y)=2x+frac{x}{sqrt{x^2+y^2}}.$$
But $u'(x)=2x+1$, and
$$u'left(sqrt{x^2+y^2}right)fracpartial{partial x}sqrt{x^2+y^2}
=left(2sqrt{x^2+y^2}+1right)frac{x}{sqrt{x^2+y^2}}
=2x+frac{x}{sqrt{x^2+y^2}}.$$
I don't see any problem....
$endgroup$
add a comment |
$begingroup$
What happens when I do this with $u(x)=x^2+x$. Write
$$f(x,y)=uleft(sqrt{x^2+y^2}right)=x^2+y^2+sqrt{x^2+y^2}.$$
Then
$$fracpartial{partial x}f(x,y)=2x+frac{x}{sqrt{x^2+y^2}}.$$
But $u'(x)=2x+1$, and
$$u'left(sqrt{x^2+y^2}right)fracpartial{partial x}sqrt{x^2+y^2}
=left(2sqrt{x^2+y^2}+1right)frac{x}{sqrt{x^2+y^2}}
=2x+frac{x}{sqrt{x^2+y^2}}.$$
I don't see any problem....
$endgroup$
add a comment |
$begingroup$
What happens when I do this with $u(x)=x^2+x$. Write
$$f(x,y)=uleft(sqrt{x^2+y^2}right)=x^2+y^2+sqrt{x^2+y^2}.$$
Then
$$fracpartial{partial x}f(x,y)=2x+frac{x}{sqrt{x^2+y^2}}.$$
But $u'(x)=2x+1$, and
$$u'left(sqrt{x^2+y^2}right)fracpartial{partial x}sqrt{x^2+y^2}
=left(2sqrt{x^2+y^2}+1right)frac{x}{sqrt{x^2+y^2}}
=2x+frac{x}{sqrt{x^2+y^2}}.$$
I don't see any problem....
$endgroup$
What happens when I do this with $u(x)=x^2+x$. Write
$$f(x,y)=uleft(sqrt{x^2+y^2}right)=x^2+y^2+sqrt{x^2+y^2}.$$
Then
$$fracpartial{partial x}f(x,y)=2x+frac{x}{sqrt{x^2+y^2}}.$$
But $u'(x)=2x+1$, and
$$u'left(sqrt{x^2+y^2}right)fracpartial{partial x}sqrt{x^2+y^2}
=left(2sqrt{x^2+y^2}+1right)frac{x}{sqrt{x^2+y^2}}
=2x+frac{x}{sqrt{x^2+y^2}}.$$
I don't see any problem....
answered Jan 20 at 6:02
Lord Shark the UnknownLord Shark the Unknown
105k1160133
105k1160133
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080218%2fhow-to-compute-u-x-sqrt-x2y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown