Product of Stirling numbers of second kind
$begingroup$
What does the following expression evaluate to:
begin{equation}
k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring takes us to a different power series or just to a different coefficient in the same power series?
combinatorics power-series stirling-numbers
$endgroup$
add a comment |
$begingroup$
What does the following expression evaluate to:
begin{equation}
k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring takes us to a different power series or just to a different coefficient in the same power series?
combinatorics power-series stirling-numbers
$endgroup$
$begingroup$
You are squaring $k! begin{Bmatrix} n \ k end{Bmatrix} $?
$endgroup$
– Lord Shark the Unknown
Jan 20 at 5:12
1
$begingroup$
@LordSharktheUnknown yes, I am wondering whether squaring takes us to a different power series or to a different coefficient in the same power series?
$endgroup$
– Singh
Jan 20 at 12:15
add a comment |
$begingroup$
What does the following expression evaluate to:
begin{equation}
k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring takes us to a different power series or just to a different coefficient in the same power series?
combinatorics power-series stirling-numbers
$endgroup$
What does the following expression evaluate to:
begin{equation}
k! begin{Bmatrix} n \ k end{Bmatrix} cdot k! begin{Bmatrix} n \ k end{Bmatrix}
end{equation}
We know that $k! begin{Bmatrix} n \ k end{Bmatrix} = n![x^n]:(e^x-1)^k$, where $[x^k]:f(x)$ represents the coefficient of $x^k$ in the power series for $f(x)$. I was wondering if squaring takes us to a different power series or just to a different coefficient in the same power series?
combinatorics power-series stirling-numbers
combinatorics power-series stirling-numbers
edited Jan 20 at 16:18
Singh
asked Jan 20 at 4:43
SinghSingh
454
454
$begingroup$
You are squaring $k! begin{Bmatrix} n \ k end{Bmatrix} $?
$endgroup$
– Lord Shark the Unknown
Jan 20 at 5:12
1
$begingroup$
@LordSharktheUnknown yes, I am wondering whether squaring takes us to a different power series or to a different coefficient in the same power series?
$endgroup$
– Singh
Jan 20 at 12:15
add a comment |
$begingroup$
You are squaring $k! begin{Bmatrix} n \ k end{Bmatrix} $?
$endgroup$
– Lord Shark the Unknown
Jan 20 at 5:12
1
$begingroup$
@LordSharktheUnknown yes, I am wondering whether squaring takes us to a different power series or to a different coefficient in the same power series?
$endgroup$
– Singh
Jan 20 at 12:15
$begingroup$
You are squaring $k! begin{Bmatrix} n \ k end{Bmatrix} $?
$endgroup$
– Lord Shark the Unknown
Jan 20 at 5:12
$begingroup$
You are squaring $k! begin{Bmatrix} n \ k end{Bmatrix} $?
$endgroup$
– Lord Shark the Unknown
Jan 20 at 5:12
1
1
$begingroup$
@LordSharktheUnknown yes, I am wondering whether squaring takes us to a different power series or to a different coefficient in the same power series?
$endgroup$
– Singh
Jan 20 at 12:15
$begingroup$
@LordSharktheUnknown yes, I am wondering whether squaring takes us to a different power series or to a different coefficient in the same power series?
$endgroup$
– Singh
Jan 20 at 12:15
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080191%2fproduct-of-stirling-numbers-of-second-kind%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080191%2fproduct-of-stirling-numbers-of-second-kind%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You are squaring $k! begin{Bmatrix} n \ k end{Bmatrix} $?
$endgroup$
– Lord Shark the Unknown
Jan 20 at 5:12
1
$begingroup$
@LordSharktheUnknown yes, I am wondering whether squaring takes us to a different power series or to a different coefficient in the same power series?
$endgroup$
– Singh
Jan 20 at 12:15