$int_{phi} z^2e^{z^3}sin z$ dz
$begingroup$
$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.
I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.
integration complex-analysis
$endgroup$
add a comment |
$begingroup$
$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.
I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.
integration complex-analysis
$endgroup$
5
$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08
$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19
2
$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03
add a comment |
$begingroup$
$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.
I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.
integration complex-analysis
$endgroup$
$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.
I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.
integration complex-analysis
integration complex-analysis
edited Jan 20 at 6:28
stone-zeng
210210
210210
asked Jan 19 at 23:01
KamiloKamilo
43
43
5
$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08
$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19
2
$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03
add a comment |
5
$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08
$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19
2
$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03
5
5
$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08
$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08
$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19
$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19
2
2
$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03
$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079941%2fint-phi-z2ez3-sin-z-dz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079941%2fint-phi-z2ez3-sin-z-dz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
5
$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08
$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19
2
$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03