$int_{phi} z^2e^{z^3}sin z$ dz












0












$begingroup$


$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.



I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    $z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
    $endgroup$
    – Mark Viola
    Jan 19 at 23:08












  • $begingroup$
    Do should I use any any another way?
    $endgroup$
    – Kamilo
    Jan 19 at 23:19






  • 2




    $begingroup$
    Why would you want to proceed any other way when the conclusion is immediate here?
    $endgroup$
    – Mark Viola
    Jan 20 at 1:03
















0












$begingroup$


$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.



I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.










share|cite|improve this question











$endgroup$








  • 5




    $begingroup$
    $z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
    $endgroup$
    – Mark Viola
    Jan 19 at 23:08












  • $begingroup$
    Do should I use any any another way?
    $endgroup$
    – Kamilo
    Jan 19 at 23:19






  • 2




    $begingroup$
    Why would you want to proceed any other way when the conclusion is immediate here?
    $endgroup$
    – Mark Viola
    Jan 20 at 1:03














0












0








0





$begingroup$


$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.



I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.










share|cite|improve this question











$endgroup$




$int_{phi} z^2e^{z^3}sin z$ dz where $phi in [0, 2pi]$ and $ phi (t) =e^{4it}$.



I want to use Cauchy's Integral Formuła for Derivtives, but I can't simplify this expression. I use substitution $ z=e^{4it}$ and $dz=ie^{4it}$ dt.







integration complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 20 at 6:28









stone-zeng

210210




210210










asked Jan 19 at 23:01









KamiloKamilo

43




43








  • 5




    $begingroup$
    $z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
    $endgroup$
    – Mark Viola
    Jan 19 at 23:08












  • $begingroup$
    Do should I use any any another way?
    $endgroup$
    – Kamilo
    Jan 19 at 23:19






  • 2




    $begingroup$
    Why would you want to proceed any other way when the conclusion is immediate here?
    $endgroup$
    – Mark Viola
    Jan 20 at 1:03














  • 5




    $begingroup$
    $z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
    $endgroup$
    – Mark Viola
    Jan 19 at 23:08












  • $begingroup$
    Do should I use any any another way?
    $endgroup$
    – Kamilo
    Jan 19 at 23:19






  • 2




    $begingroup$
    Why would you want to proceed any other way when the conclusion is immediate here?
    $endgroup$
    – Mark Viola
    Jan 20 at 1:03








5




5




$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08






$begingroup$
$z^2e^{z^3}sin(z)$ is holomorphic in and on the circle $z=e^{i4t}$, $tin [0,pi/2]$. The integral is $0$ by Cauchy's Integral Theorem.
$endgroup$
– Mark Viola
Jan 19 at 23:08














$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19




$begingroup$
Do should I use any any another way?
$endgroup$
– Kamilo
Jan 19 at 23:19




2




2




$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03




$begingroup$
Why would you want to proceed any other way when the conclusion is immediate here?
$endgroup$
– Mark Viola
Jan 20 at 1:03










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079941%2fint-phi-z2ez3-sin-z-dz%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079941%2fint-phi-z2ez3-sin-z-dz%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]