How do we prove the union bound inequality (Boole's inequality) for infinite sets?












1












$begingroup$


I am aware that Boole's inequality can be proved by induction. How do we extend these results to an infinite set? (since induction cannot be applied in this case)



P($bigcuplimits_{i=1}^{infty} A_i$) $leq$ $sum limits_{i=1}^{infty} P(A_i)$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I am aware that Boole's inequality can be proved by induction. How do we extend these results to an infinite set? (since induction cannot be applied in this case)



    P($bigcuplimits_{i=1}^{infty} A_i$) $leq$ $sum limits_{i=1}^{infty} P(A_i)$










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I am aware that Boole's inequality can be proved by induction. How do we extend these results to an infinite set? (since induction cannot be applied in this case)



      P($bigcuplimits_{i=1}^{infty} A_i$) $leq$ $sum limits_{i=1}^{infty} P(A_i)$










      share|cite|improve this question









      $endgroup$




      I am aware that Boole's inequality can be proved by induction. How do we extend these results to an infinite set? (since induction cannot be applied in this case)



      P($bigcuplimits_{i=1}^{infty} A_i$) $leq$ $sum limits_{i=1}^{infty} P(A_i)$







      probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 14 '18 at 12:53









      Akankshita DashAkankshita Dash

      11227




      11227






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Define $B_i = A_i backslash bigcup^{i-1}_{j=1} A_j$, then we see that $bigcup^{i}_{j=1} B_j=bigcup^{i}_{j=1} A_j$, so $bigcup^{infty}_{j=1} B_j=bigcup^{infty}_{j=1} A_j$. Also note that $B_jsubseteq A_j$, so $ mathbb P (B_j) leq mathbb P(A_j)$ and thus
          $$mathbb P (bigcup^{infty}_{j=1}A_j) = mathbb P (bigcup^{infty}_{j=1}B_j) = sum^{infty}_{j=1} mathbb P (B_j) leq sum^{infty}_{j=1} mathbb P(A_j)$$
          where the second equality holds due to all $B_j$ being pairwise disjoint.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Alternatively, let $f(X)$ be the indicator that $Xinbigcup_i A_i$ and let $g(X)$ denote the number of sets $A_i$ that contain $X$; it might for some $X$ values be infinite. Clearly $f(X)le g(X)$ with probability $1$. Take expectations, so $E(f(X))le E(g(X))$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2604788%2fhow-do-we-prove-the-union-bound-inequality-booles-inequality-for-infinite-set%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              Define $B_i = A_i backslash bigcup^{i-1}_{j=1} A_j$, then we see that $bigcup^{i}_{j=1} B_j=bigcup^{i}_{j=1} A_j$, so $bigcup^{infty}_{j=1} B_j=bigcup^{infty}_{j=1} A_j$. Also note that $B_jsubseteq A_j$, so $ mathbb P (B_j) leq mathbb P(A_j)$ and thus
              $$mathbb P (bigcup^{infty}_{j=1}A_j) = mathbb P (bigcup^{infty}_{j=1}B_j) = sum^{infty}_{j=1} mathbb P (B_j) leq sum^{infty}_{j=1} mathbb P(A_j)$$
              where the second equality holds due to all $B_j$ being pairwise disjoint.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Define $B_i = A_i backslash bigcup^{i-1}_{j=1} A_j$, then we see that $bigcup^{i}_{j=1} B_j=bigcup^{i}_{j=1} A_j$, so $bigcup^{infty}_{j=1} B_j=bigcup^{infty}_{j=1} A_j$. Also note that $B_jsubseteq A_j$, so $ mathbb P (B_j) leq mathbb P(A_j)$ and thus
                $$mathbb P (bigcup^{infty}_{j=1}A_j) = mathbb P (bigcup^{infty}_{j=1}B_j) = sum^{infty}_{j=1} mathbb P (B_j) leq sum^{infty}_{j=1} mathbb P(A_j)$$
                where the second equality holds due to all $B_j$ being pairwise disjoint.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Define $B_i = A_i backslash bigcup^{i-1}_{j=1} A_j$, then we see that $bigcup^{i}_{j=1} B_j=bigcup^{i}_{j=1} A_j$, so $bigcup^{infty}_{j=1} B_j=bigcup^{infty}_{j=1} A_j$. Also note that $B_jsubseteq A_j$, so $ mathbb P (B_j) leq mathbb P(A_j)$ and thus
                  $$mathbb P (bigcup^{infty}_{j=1}A_j) = mathbb P (bigcup^{infty}_{j=1}B_j) = sum^{infty}_{j=1} mathbb P (B_j) leq sum^{infty}_{j=1} mathbb P(A_j)$$
                  where the second equality holds due to all $B_j$ being pairwise disjoint.






                  share|cite|improve this answer









                  $endgroup$



                  Define $B_i = A_i backslash bigcup^{i-1}_{j=1} A_j$, then we see that $bigcup^{i}_{j=1} B_j=bigcup^{i}_{j=1} A_j$, so $bigcup^{infty}_{j=1} B_j=bigcup^{infty}_{j=1} A_j$. Also note that $B_jsubseteq A_j$, so $ mathbb P (B_j) leq mathbb P(A_j)$ and thus
                  $$mathbb P (bigcup^{infty}_{j=1}A_j) = mathbb P (bigcup^{infty}_{j=1}B_j) = sum^{infty}_{j=1} mathbb P (B_j) leq sum^{infty}_{j=1} mathbb P(A_j)$$
                  where the second equality holds due to all $B_j$ being pairwise disjoint.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 14 '18 at 13:01









                  The PhenotypeThe Phenotype

                  4,77491733




                  4,77491733























                      0












                      $begingroup$

                      Alternatively, let $f(X)$ be the indicator that $Xinbigcup_i A_i$ and let $g(X)$ denote the number of sets $A_i$ that contain $X$; it might for some $X$ values be infinite. Clearly $f(X)le g(X)$ with probability $1$. Take expectations, so $E(f(X))le E(g(X))$.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Alternatively, let $f(X)$ be the indicator that $Xinbigcup_i A_i$ and let $g(X)$ denote the number of sets $A_i$ that contain $X$; it might for some $X$ values be infinite. Clearly $f(X)le g(X)$ with probability $1$. Take expectations, so $E(f(X))le E(g(X))$.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Alternatively, let $f(X)$ be the indicator that $Xinbigcup_i A_i$ and let $g(X)$ denote the number of sets $A_i$ that contain $X$; it might for some $X$ values be infinite. Clearly $f(X)le g(X)$ with probability $1$. Take expectations, so $E(f(X))le E(g(X))$.






                          share|cite|improve this answer









                          $endgroup$



                          Alternatively, let $f(X)$ be the indicator that $Xinbigcup_i A_i$ and let $g(X)$ denote the number of sets $A_i$ that contain $X$; it might for some $X$ values be infinite. Clearly $f(X)le g(X)$ with probability $1$. Take expectations, so $E(f(X))le E(g(X))$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 14 '18 at 13:37









                          kimchi loverkimchi lover

                          11k31128




                          11k31128






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2604788%2fhow-do-we-prove-the-union-bound-inequality-booles-inequality-for-infinite-set%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                              Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                              A Topological Invariant for $pi_3(U(n))$