About proof: $cot^{-1}left(frac{sqrt{1+sin x}+sqrt{1-sin x}}{sqrt{1+sin x}-sqrt{1-sin x}}right)=frac x2$












5












$begingroup$


I have the following question:




Prove that: $$ cot^{-1}Biggl(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}Biggl) = frac x2, x in biggl(0, frac pi4biggl) $$



The solution:



enter image description here




My question is about the second step (i.e., highlighted). We know that it has came from the following resolution: $$ sqrt{1pm sin x} = sqrt{sin^2frac x 2 + cos^2frac x 2 pm2sinfrac x 2cosfrac x 2} = pm biggl( cosfrac x 2 pm sinfrac x 2 biggl) $$



I've included the $pm$ symbol in accordance with the standard definition of square root. The above solution uses the positive resolution (i.e., $ cosfrac x 2 - sinfrac x 2 $) for $ sqrt{1- sin x} $. But, if I use the negative one, then the result changes. The sixth step changes to: $$ cot^{-1}biggl(tanfrac x 2biggl) = cot^{-1}Biggl(cotleft(frac pi 2 - frac x 2right)Biggl) $$



which yield the result: $$ frac pi 2 - frac x 2 $$



Mathematically, this result is different from that provided in the RHS of question.



Is the question statement wrong or I've been hacked up?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Winther Ok, I edited the question.
    $endgroup$
    – rv7
    Dec 1 '18 at 13:42










  • $begingroup$
    The range $xin(0,pi/4)$ has to be kept in mind while removing the square root.
    $endgroup$
    – StubbornAtom
    Dec 1 '18 at 13:55










  • $begingroup$
    It’s already given x belong to 0 to pi/4. That means x is positive. Which also means sinx + cos is positive
    $endgroup$
    – Fawad
    Dec 2 '18 at 5:17






  • 1




    $begingroup$
    The authors use a specific range to get positive numbers. They don't spell it out but they DO mean PRINCIPAL ROOTS (square root values are positive). They also imply real numbers in this problem. And no, the result doesn’t change if “standard” square roots are extracted: You just get two values. Yet nonsense may still arise: $sqrt{1}=1;;sqrt{1}=-1$. Hence, $-1=+1$. Non-principal square root values should be combined properly!
    $endgroup$
    – Ken Draco
    Jan 21 at 7:44










  • $begingroup$
    Note that Arccot may have infinite number of values since $cot$ is periodic. So we need to restrict its range to avoid dragging around infinite number of values. Hence, we define $cot^{-1}$ range from $0$ to $pi$ for convenience (to make $cot^{-1}$ continuous). Hope you can figure out everything checks out for negative values too if root values are combined properly! And the range of $cot^{-1}$ can also be defined –pi/2 to +pi/2 to deal with negative values (not needed here). +1 for figuring out roots aren’t principal roots and confusion is possible if a student is not a rote-learner.
    $endgroup$
    – Ken Draco
    Jan 21 at 7:47
















5












$begingroup$


I have the following question:




Prove that: $$ cot^{-1}Biggl(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}Biggl) = frac x2, x in biggl(0, frac pi4biggl) $$



The solution:



enter image description here




My question is about the second step (i.e., highlighted). We know that it has came from the following resolution: $$ sqrt{1pm sin x} = sqrt{sin^2frac x 2 + cos^2frac x 2 pm2sinfrac x 2cosfrac x 2} = pm biggl( cosfrac x 2 pm sinfrac x 2 biggl) $$



I've included the $pm$ symbol in accordance with the standard definition of square root. The above solution uses the positive resolution (i.e., $ cosfrac x 2 - sinfrac x 2 $) for $ sqrt{1- sin x} $. But, if I use the negative one, then the result changes. The sixth step changes to: $$ cot^{-1}biggl(tanfrac x 2biggl) = cot^{-1}Biggl(cotleft(frac pi 2 - frac x 2right)Biggl) $$



which yield the result: $$ frac pi 2 - frac x 2 $$



Mathematically, this result is different from that provided in the RHS of question.



Is the question statement wrong or I've been hacked up?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @Winther Ok, I edited the question.
    $endgroup$
    – rv7
    Dec 1 '18 at 13:42










  • $begingroup$
    The range $xin(0,pi/4)$ has to be kept in mind while removing the square root.
    $endgroup$
    – StubbornAtom
    Dec 1 '18 at 13:55










  • $begingroup$
    It’s already given x belong to 0 to pi/4. That means x is positive. Which also means sinx + cos is positive
    $endgroup$
    – Fawad
    Dec 2 '18 at 5:17






  • 1




    $begingroup$
    The authors use a specific range to get positive numbers. They don't spell it out but they DO mean PRINCIPAL ROOTS (square root values are positive). They also imply real numbers in this problem. And no, the result doesn’t change if “standard” square roots are extracted: You just get two values. Yet nonsense may still arise: $sqrt{1}=1;;sqrt{1}=-1$. Hence, $-1=+1$. Non-principal square root values should be combined properly!
    $endgroup$
    – Ken Draco
    Jan 21 at 7:44










  • $begingroup$
    Note that Arccot may have infinite number of values since $cot$ is periodic. So we need to restrict its range to avoid dragging around infinite number of values. Hence, we define $cot^{-1}$ range from $0$ to $pi$ for convenience (to make $cot^{-1}$ continuous). Hope you can figure out everything checks out for negative values too if root values are combined properly! And the range of $cot^{-1}$ can also be defined –pi/2 to +pi/2 to deal with negative values (not needed here). +1 for figuring out roots aren’t principal roots and confusion is possible if a student is not a rote-learner.
    $endgroup$
    – Ken Draco
    Jan 21 at 7:47














5












5








5





$begingroup$


I have the following question:




Prove that: $$ cot^{-1}Biggl(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}Biggl) = frac x2, x in biggl(0, frac pi4biggl) $$



The solution:



enter image description here




My question is about the second step (i.e., highlighted). We know that it has came from the following resolution: $$ sqrt{1pm sin x} = sqrt{sin^2frac x 2 + cos^2frac x 2 pm2sinfrac x 2cosfrac x 2} = pm biggl( cosfrac x 2 pm sinfrac x 2 biggl) $$



I've included the $pm$ symbol in accordance with the standard definition of square root. The above solution uses the positive resolution (i.e., $ cosfrac x 2 - sinfrac x 2 $) for $ sqrt{1- sin x} $. But, if I use the negative one, then the result changes. The sixth step changes to: $$ cot^{-1}biggl(tanfrac x 2biggl) = cot^{-1}Biggl(cotleft(frac pi 2 - frac x 2right)Biggl) $$



which yield the result: $$ frac pi 2 - frac x 2 $$



Mathematically, this result is different from that provided in the RHS of question.



Is the question statement wrong or I've been hacked up?










share|cite|improve this question











$endgroup$




I have the following question:




Prove that: $$ cot^{-1}Biggl(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}Biggl) = frac x2, x in biggl(0, frac pi4biggl) $$



The solution:



enter image description here




My question is about the second step (i.e., highlighted). We know that it has came from the following resolution: $$ sqrt{1pm sin x} = sqrt{sin^2frac x 2 + cos^2frac x 2 pm2sinfrac x 2cosfrac x 2} = pm biggl( cosfrac x 2 pm sinfrac x 2 biggl) $$



I've included the $pm$ symbol in accordance with the standard definition of square root. The above solution uses the positive resolution (i.e., $ cosfrac x 2 - sinfrac x 2 $) for $ sqrt{1- sin x} $. But, if I use the negative one, then the result changes. The sixth step changes to: $$ cot^{-1}biggl(tanfrac x 2biggl) = cot^{-1}Biggl(cotleft(frac pi 2 - frac x 2right)Biggl) $$



which yield the result: $$ frac pi 2 - frac x 2 $$



Mathematically, this result is different from that provided in the RHS of question.



Is the question statement wrong or I've been hacked up?







trigonometry proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 16:56







rv7

















asked Dec 1 '18 at 12:45









rv7rv7

10311




10311












  • $begingroup$
    @Winther Ok, I edited the question.
    $endgroup$
    – rv7
    Dec 1 '18 at 13:42










  • $begingroup$
    The range $xin(0,pi/4)$ has to be kept in mind while removing the square root.
    $endgroup$
    – StubbornAtom
    Dec 1 '18 at 13:55










  • $begingroup$
    It’s already given x belong to 0 to pi/4. That means x is positive. Which also means sinx + cos is positive
    $endgroup$
    – Fawad
    Dec 2 '18 at 5:17






  • 1




    $begingroup$
    The authors use a specific range to get positive numbers. They don't spell it out but they DO mean PRINCIPAL ROOTS (square root values are positive). They also imply real numbers in this problem. And no, the result doesn’t change if “standard” square roots are extracted: You just get two values. Yet nonsense may still arise: $sqrt{1}=1;;sqrt{1}=-1$. Hence, $-1=+1$. Non-principal square root values should be combined properly!
    $endgroup$
    – Ken Draco
    Jan 21 at 7:44










  • $begingroup$
    Note that Arccot may have infinite number of values since $cot$ is periodic. So we need to restrict its range to avoid dragging around infinite number of values. Hence, we define $cot^{-1}$ range from $0$ to $pi$ for convenience (to make $cot^{-1}$ continuous). Hope you can figure out everything checks out for negative values too if root values are combined properly! And the range of $cot^{-1}$ can also be defined –pi/2 to +pi/2 to deal with negative values (not needed here). +1 for figuring out roots aren’t principal roots and confusion is possible if a student is not a rote-learner.
    $endgroup$
    – Ken Draco
    Jan 21 at 7:47


















  • $begingroup$
    @Winther Ok, I edited the question.
    $endgroup$
    – rv7
    Dec 1 '18 at 13:42










  • $begingroup$
    The range $xin(0,pi/4)$ has to be kept in mind while removing the square root.
    $endgroup$
    – StubbornAtom
    Dec 1 '18 at 13:55










  • $begingroup$
    It’s already given x belong to 0 to pi/4. That means x is positive. Which also means sinx + cos is positive
    $endgroup$
    – Fawad
    Dec 2 '18 at 5:17






  • 1




    $begingroup$
    The authors use a specific range to get positive numbers. They don't spell it out but they DO mean PRINCIPAL ROOTS (square root values are positive). They also imply real numbers in this problem. And no, the result doesn’t change if “standard” square roots are extracted: You just get two values. Yet nonsense may still arise: $sqrt{1}=1;;sqrt{1}=-1$. Hence, $-1=+1$. Non-principal square root values should be combined properly!
    $endgroup$
    – Ken Draco
    Jan 21 at 7:44










  • $begingroup$
    Note that Arccot may have infinite number of values since $cot$ is periodic. So we need to restrict its range to avoid dragging around infinite number of values. Hence, we define $cot^{-1}$ range from $0$ to $pi$ for convenience (to make $cot^{-1}$ continuous). Hope you can figure out everything checks out for negative values too if root values are combined properly! And the range of $cot^{-1}$ can also be defined –pi/2 to +pi/2 to deal with negative values (not needed here). +1 for figuring out roots aren’t principal roots and confusion is possible if a student is not a rote-learner.
    $endgroup$
    – Ken Draco
    Jan 21 at 7:47
















$begingroup$
@Winther Ok, I edited the question.
$endgroup$
– rv7
Dec 1 '18 at 13:42




$begingroup$
@Winther Ok, I edited the question.
$endgroup$
– rv7
Dec 1 '18 at 13:42












$begingroup$
The range $xin(0,pi/4)$ has to be kept in mind while removing the square root.
$endgroup$
– StubbornAtom
Dec 1 '18 at 13:55




$begingroup$
The range $xin(0,pi/4)$ has to be kept in mind while removing the square root.
$endgroup$
– StubbornAtom
Dec 1 '18 at 13:55












$begingroup$
It’s already given x belong to 0 to pi/4. That means x is positive. Which also means sinx + cos is positive
$endgroup$
– Fawad
Dec 2 '18 at 5:17




$begingroup$
It’s already given x belong to 0 to pi/4. That means x is positive. Which also means sinx + cos is positive
$endgroup$
– Fawad
Dec 2 '18 at 5:17




1




1




$begingroup$
The authors use a specific range to get positive numbers. They don't spell it out but they DO mean PRINCIPAL ROOTS (square root values are positive). They also imply real numbers in this problem. And no, the result doesn’t change if “standard” square roots are extracted: You just get two values. Yet nonsense may still arise: $sqrt{1}=1;;sqrt{1}=-1$. Hence, $-1=+1$. Non-principal square root values should be combined properly!
$endgroup$
– Ken Draco
Jan 21 at 7:44




$begingroup$
The authors use a specific range to get positive numbers. They don't spell it out but they DO mean PRINCIPAL ROOTS (square root values are positive). They also imply real numbers in this problem. And no, the result doesn’t change if “standard” square roots are extracted: You just get two values. Yet nonsense may still arise: $sqrt{1}=1;;sqrt{1}=-1$. Hence, $-1=+1$. Non-principal square root values should be combined properly!
$endgroup$
– Ken Draco
Jan 21 at 7:44












$begingroup$
Note that Arccot may have infinite number of values since $cot$ is periodic. So we need to restrict its range to avoid dragging around infinite number of values. Hence, we define $cot^{-1}$ range from $0$ to $pi$ for convenience (to make $cot^{-1}$ continuous). Hope you can figure out everything checks out for negative values too if root values are combined properly! And the range of $cot^{-1}$ can also be defined –pi/2 to +pi/2 to deal with negative values (not needed here). +1 for figuring out roots aren’t principal roots and confusion is possible if a student is not a rote-learner.
$endgroup$
– Ken Draco
Jan 21 at 7:47




$begingroup$
Note that Arccot may have infinite number of values since $cot$ is periodic. So we need to restrict its range to avoid dragging around infinite number of values. Hence, we define $cot^{-1}$ range from $0$ to $pi$ for convenience (to make $cot^{-1}$ continuous). Hope you can figure out everything checks out for negative values too if root values are combined properly! And the range of $cot^{-1}$ can also be defined –pi/2 to +pi/2 to deal with negative values (not needed here). +1 for figuring out roots aren’t principal roots and confusion is possible if a student is not a rote-learner.
$endgroup$
– Ken Draco
Jan 21 at 7:47










4 Answers
4






active

oldest

votes


















1












$begingroup$

Rationalize the numerator to find



$$f(x)=dfrac{1+|cos x|}{sin x}$$



Now if $cos xge0,$ $$f(x)=cotdfrac x2$$



$cot^{-1}f(x)=?$



Else $f(x)=dfrac{1-cos x}{sin x}=tandfrac x2$



Now $cot^{-1}f(x)=dfracpi2-tan^{-1}f(x)=?$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    As StubbornAtom mentioned in comment, for $x in biggl(0, frac pi4biggl)$, the square root is:
    $$sqrt{1-sin x}=cos frac x2-sin frac x2,$$
    because:
    $$cos frac x2-sin frac x2>0.$$
    If, for example, $x in biggl(frac pi2, pibiggl)$, the square root would be:
    $$sqrt{1-sin x}=sinfrac x2-cos frac x2,$$
    because:
    $$sin frac x2-cos frac x2>0.$$



    Addendum. Note that $pm$ is placed to make the number positive and it does not imply one gets positive and negative values for the square root. Here is another way to write the same equality:
    $$sqrt{1-sin x}=left|cos frac x2-sin frac x2right|=begin{cases}+left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2ge 0 \ -left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2< 0 \ end{cases}.$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
      $endgroup$
      – rv7
      Dec 2 '18 at 2:28










    • $begingroup$
      Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
      $endgroup$
      – farruhota
      Dec 2 '18 at 4:20





















    0












    $begingroup$

    Note that for $xin (0,{pi over 4})$ we have $$sqrt{1-{sqrt 2over 2}}<sqrt{1-sin x}<1\sqrt{1-{sqrt 2over 2}}=cos {pi over 8}-sin {pi over 8}<cos {xover 2}-sin{xover 2}<1\-1<sin {x over 2}-cos {x over 2}<-sqrt{1-{sqrt 2over 2}}$$comparing the range for all $xin (0,{pi over 4})$ we obtain$$sqrt{1-sin x}=cos {xover 2}-sin{xover 2}$$and$$sqrt{1-sin x}ne sin {xover 2}-cos{xover 2}$$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      We see that
      $$frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$
      $$= sqrt{(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})^2}$$
      $$= sqrt{frac{1+sin x +1-sin x + 2cdotsqrt{1-sin^2 x}}{1+sin x +1-sin x -2cdotsqrt{1-sin^2 x}}}$$
      $$= sqrt{frac{1+cos x}{1-cos x}}$$
      $$= sqrt{frac{2cdotcos^2frac{x}{2}}{2cdotsin^2frac{x}{2}}}$$
      $$= cot frac{x}{2}$$



      And hence,
      $$cot^{-1} (frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})$$
      $$= cot^{-1} (cot frac{x}{2})$$
      $$= frac{x}{2}$$



      Note: as $xin [0,frac{pi}{4}]$, $sqrt{1-sin x} le sqrt{1+sin x}$.
      And hence
      $$0lefrac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
        $endgroup$
        – rv7
        Jan 21 at 15:10













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021289%2fabout-proof-cot-1-left-frac-sqrt1-sin-x-sqrt1-sin-x-sqrt1-sin%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Rationalize the numerator to find



      $$f(x)=dfrac{1+|cos x|}{sin x}$$



      Now if $cos xge0,$ $$f(x)=cotdfrac x2$$



      $cot^{-1}f(x)=?$



      Else $f(x)=dfrac{1-cos x}{sin x}=tandfrac x2$



      Now $cot^{-1}f(x)=dfracpi2-tan^{-1}f(x)=?$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Rationalize the numerator to find



        $$f(x)=dfrac{1+|cos x|}{sin x}$$



        Now if $cos xge0,$ $$f(x)=cotdfrac x2$$



        $cot^{-1}f(x)=?$



        Else $f(x)=dfrac{1-cos x}{sin x}=tandfrac x2$



        Now $cot^{-1}f(x)=dfracpi2-tan^{-1}f(x)=?$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Rationalize the numerator to find



          $$f(x)=dfrac{1+|cos x|}{sin x}$$



          Now if $cos xge0,$ $$f(x)=cotdfrac x2$$



          $cot^{-1}f(x)=?$



          Else $f(x)=dfrac{1-cos x}{sin x}=tandfrac x2$



          Now $cot^{-1}f(x)=dfracpi2-tan^{-1}f(x)=?$






          share|cite|improve this answer









          $endgroup$



          Rationalize the numerator to find



          $$f(x)=dfrac{1+|cos x|}{sin x}$$



          Now if $cos xge0,$ $$f(x)=cotdfrac x2$$



          $cot^{-1}f(x)=?$



          Else $f(x)=dfrac{1-cos x}{sin x}=tandfrac x2$



          Now $cot^{-1}f(x)=dfracpi2-tan^{-1}f(x)=?$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 1 '18 at 13:11









          lab bhattacharjeelab bhattacharjee

          226k15157275




          226k15157275























              1












              $begingroup$

              As StubbornAtom mentioned in comment, for $x in biggl(0, frac pi4biggl)$, the square root is:
              $$sqrt{1-sin x}=cos frac x2-sin frac x2,$$
              because:
              $$cos frac x2-sin frac x2>0.$$
              If, for example, $x in biggl(frac pi2, pibiggl)$, the square root would be:
              $$sqrt{1-sin x}=sinfrac x2-cos frac x2,$$
              because:
              $$sin frac x2-cos frac x2>0.$$



              Addendum. Note that $pm$ is placed to make the number positive and it does not imply one gets positive and negative values for the square root. Here is another way to write the same equality:
              $$sqrt{1-sin x}=left|cos frac x2-sin frac x2right|=begin{cases}+left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2ge 0 \ -left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2< 0 \ end{cases}.$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
                $endgroup$
                – rv7
                Dec 2 '18 at 2:28










              • $begingroup$
                Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
                $endgroup$
                – farruhota
                Dec 2 '18 at 4:20


















              1












              $begingroup$

              As StubbornAtom mentioned in comment, for $x in biggl(0, frac pi4biggl)$, the square root is:
              $$sqrt{1-sin x}=cos frac x2-sin frac x2,$$
              because:
              $$cos frac x2-sin frac x2>0.$$
              If, for example, $x in biggl(frac pi2, pibiggl)$, the square root would be:
              $$sqrt{1-sin x}=sinfrac x2-cos frac x2,$$
              because:
              $$sin frac x2-cos frac x2>0.$$



              Addendum. Note that $pm$ is placed to make the number positive and it does not imply one gets positive and negative values for the square root. Here is another way to write the same equality:
              $$sqrt{1-sin x}=left|cos frac x2-sin frac x2right|=begin{cases}+left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2ge 0 \ -left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2< 0 \ end{cases}.$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
                $endgroup$
                – rv7
                Dec 2 '18 at 2:28










              • $begingroup$
                Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
                $endgroup$
                – farruhota
                Dec 2 '18 at 4:20
















              1












              1








              1





              $begingroup$

              As StubbornAtom mentioned in comment, for $x in biggl(0, frac pi4biggl)$, the square root is:
              $$sqrt{1-sin x}=cos frac x2-sin frac x2,$$
              because:
              $$cos frac x2-sin frac x2>0.$$
              If, for example, $x in biggl(frac pi2, pibiggl)$, the square root would be:
              $$sqrt{1-sin x}=sinfrac x2-cos frac x2,$$
              because:
              $$sin frac x2-cos frac x2>0.$$



              Addendum. Note that $pm$ is placed to make the number positive and it does not imply one gets positive and negative values for the square root. Here is another way to write the same equality:
              $$sqrt{1-sin x}=left|cos frac x2-sin frac x2right|=begin{cases}+left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2ge 0 \ -left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2< 0 \ end{cases}.$$






              share|cite|improve this answer











              $endgroup$



              As StubbornAtom mentioned in comment, for $x in biggl(0, frac pi4biggl)$, the square root is:
              $$sqrt{1-sin x}=cos frac x2-sin frac x2,$$
              because:
              $$cos frac x2-sin frac x2>0.$$
              If, for example, $x in biggl(frac pi2, pibiggl)$, the square root would be:
              $$sqrt{1-sin x}=sinfrac x2-cos frac x2,$$
              because:
              $$sin frac x2-cos frac x2>0.$$



              Addendum. Note that $pm$ is placed to make the number positive and it does not imply one gets positive and negative values for the square root. Here is another way to write the same equality:
              $$sqrt{1-sin x}=left|cos frac x2-sin frac x2right|=begin{cases}+left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2ge 0 \ -left(cos frac x2-sin frac x2right), cos frac x2-sin frac x2< 0 \ end{cases}.$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 2 '18 at 5:11

























              answered Dec 1 '18 at 16:16









              farruhotafarruhota

              20.6k2740




              20.6k2740












              • $begingroup$
                Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
                $endgroup$
                – rv7
                Dec 2 '18 at 2:28










              • $begingroup$
                Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
                $endgroup$
                – farruhota
                Dec 2 '18 at 4:20




















              • $begingroup$
                Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
                $endgroup$
                – rv7
                Dec 2 '18 at 2:28










              • $begingroup$
                Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
                $endgroup$
                – farruhota
                Dec 2 '18 at 4:20


















              $begingroup$
              Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
              $endgroup$
              – rv7
              Dec 2 '18 at 2:28




              $begingroup$
              Why not $sqrt{1-sin x}= - bigl( cos frac x2-sin frac x2 bigl)$? Because $sqrt9 = pm3$
              $endgroup$
              – rv7
              Dec 2 '18 at 2:28












              $begingroup$
              Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
              $endgroup$
              – farruhota
              Dec 2 '18 at 4:20






              $begingroup$
              Firstly, $0le 1-sin xle 2<9$. Secondly, $sqrt{9}=3$ and $pm sqrt{9}=pm 3$. Thirdly, $0<x<pi/4$. For example, when $x=pi/6$, $sqrt{1-sin (pi/6)}=1/sqrt{2}=cos (pi/12)-sin (pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$. Fourthly, for $x=5pi/6>pi/2>pi/4$, we get what you are saying: $sqrt{1-sin (5pi/6)}=1/sqrt{2}=sin (5pi/12)-cos (5pi/12)=frac{1+sqrt{3}}{2sqrt{2}}-frac{sqrt{3}-1}{2sqrt{2}}$.
              $endgroup$
              – farruhota
              Dec 2 '18 at 4:20













              0












              $begingroup$

              Note that for $xin (0,{pi over 4})$ we have $$sqrt{1-{sqrt 2over 2}}<sqrt{1-sin x}<1\sqrt{1-{sqrt 2over 2}}=cos {pi over 8}-sin {pi over 8}<cos {xover 2}-sin{xover 2}<1\-1<sin {x over 2}-cos {x over 2}<-sqrt{1-{sqrt 2over 2}}$$comparing the range for all $xin (0,{pi over 4})$ we obtain$$sqrt{1-sin x}=cos {xover 2}-sin{xover 2}$$and$$sqrt{1-sin x}ne sin {xover 2}-cos{xover 2}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Note that for $xin (0,{pi over 4})$ we have $$sqrt{1-{sqrt 2over 2}}<sqrt{1-sin x}<1\sqrt{1-{sqrt 2over 2}}=cos {pi over 8}-sin {pi over 8}<cos {xover 2}-sin{xover 2}<1\-1<sin {x over 2}-cos {x over 2}<-sqrt{1-{sqrt 2over 2}}$$comparing the range for all $xin (0,{pi over 4})$ we obtain$$sqrt{1-sin x}=cos {xover 2}-sin{xover 2}$$and$$sqrt{1-sin x}ne sin {xover 2}-cos{xover 2}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Note that for $xin (0,{pi over 4})$ we have $$sqrt{1-{sqrt 2over 2}}<sqrt{1-sin x}<1\sqrt{1-{sqrt 2over 2}}=cos {pi over 8}-sin {pi over 8}<cos {xover 2}-sin{xover 2}<1\-1<sin {x over 2}-cos {x over 2}<-sqrt{1-{sqrt 2over 2}}$$comparing the range for all $xin (0,{pi over 4})$ we obtain$$sqrt{1-sin x}=cos {xover 2}-sin{xover 2}$$and$$sqrt{1-sin x}ne sin {xover 2}-cos{xover 2}$$






                  share|cite|improve this answer









                  $endgroup$



                  Note that for $xin (0,{pi over 4})$ we have $$sqrt{1-{sqrt 2over 2}}<sqrt{1-sin x}<1\sqrt{1-{sqrt 2over 2}}=cos {pi over 8}-sin {pi over 8}<cos {xover 2}-sin{xover 2}<1\-1<sin {x over 2}-cos {x over 2}<-sqrt{1-{sqrt 2over 2}}$$comparing the range for all $xin (0,{pi over 4})$ we obtain$$sqrt{1-sin x}=cos {xover 2}-sin{xover 2}$$and$$sqrt{1-sin x}ne sin {xover 2}-cos{xover 2}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 19 at 19:16









                  Mostafa AyazMostafa Ayaz

                  15.6k3939




                  15.6k3939























                      0












                      $begingroup$

                      We see that
                      $$frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$
                      $$= sqrt{(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})^2}$$
                      $$= sqrt{frac{1+sin x +1-sin x + 2cdotsqrt{1-sin^2 x}}{1+sin x +1-sin x -2cdotsqrt{1-sin^2 x}}}$$
                      $$= sqrt{frac{1+cos x}{1-cos x}}$$
                      $$= sqrt{frac{2cdotcos^2frac{x}{2}}{2cdotsin^2frac{x}{2}}}$$
                      $$= cot frac{x}{2}$$



                      And hence,
                      $$cot^{-1} (frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})$$
                      $$= cot^{-1} (cot frac{x}{2})$$
                      $$= frac{x}{2}$$



                      Note: as $xin [0,frac{pi}{4}]$, $sqrt{1-sin x} le sqrt{1+sin x}$.
                      And hence
                      $$0lefrac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
                        $endgroup$
                        – rv7
                        Jan 21 at 15:10


















                      0












                      $begingroup$

                      We see that
                      $$frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$
                      $$= sqrt{(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})^2}$$
                      $$= sqrt{frac{1+sin x +1-sin x + 2cdotsqrt{1-sin^2 x}}{1+sin x +1-sin x -2cdotsqrt{1-sin^2 x}}}$$
                      $$= sqrt{frac{1+cos x}{1-cos x}}$$
                      $$= sqrt{frac{2cdotcos^2frac{x}{2}}{2cdotsin^2frac{x}{2}}}$$
                      $$= cot frac{x}{2}$$



                      And hence,
                      $$cot^{-1} (frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})$$
                      $$= cot^{-1} (cot frac{x}{2})$$
                      $$= frac{x}{2}$$



                      Note: as $xin [0,frac{pi}{4}]$, $sqrt{1-sin x} le sqrt{1+sin x}$.
                      And hence
                      $$0lefrac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
                        $endgroup$
                        – rv7
                        Jan 21 at 15:10
















                      0












                      0








                      0





                      $begingroup$

                      We see that
                      $$frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$
                      $$= sqrt{(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})^2}$$
                      $$= sqrt{frac{1+sin x +1-sin x + 2cdotsqrt{1-sin^2 x}}{1+sin x +1-sin x -2cdotsqrt{1-sin^2 x}}}$$
                      $$= sqrt{frac{1+cos x}{1-cos x}}$$
                      $$= sqrt{frac{2cdotcos^2frac{x}{2}}{2cdotsin^2frac{x}{2}}}$$
                      $$= cot frac{x}{2}$$



                      And hence,
                      $$cot^{-1} (frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})$$
                      $$= cot^{-1} (cot frac{x}{2})$$
                      $$= frac{x}{2}$$



                      Note: as $xin [0,frac{pi}{4}]$, $sqrt{1-sin x} le sqrt{1+sin x}$.
                      And hence
                      $$0lefrac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$






                      share|cite|improve this answer











                      $endgroup$



                      We see that
                      $$frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$
                      $$= sqrt{(frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})^2}$$
                      $$= sqrt{frac{1+sin x +1-sin x + 2cdotsqrt{1-sin^2 x}}{1+sin x +1-sin x -2cdotsqrt{1-sin^2 x}}}$$
                      $$= sqrt{frac{1+cos x}{1-cos x}}$$
                      $$= sqrt{frac{2cdotcos^2frac{x}{2}}{2cdotsin^2frac{x}{2}}}$$
                      $$= cot frac{x}{2}$$



                      And hence,
                      $$cot^{-1} (frac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}})$$
                      $$= cot^{-1} (cot frac{x}{2})$$
                      $$= frac{x}{2}$$



                      Note: as $xin [0,frac{pi}{4}]$, $sqrt{1-sin x} le sqrt{1+sin x}$.
                      And hence
                      $$0lefrac{sqrt{1+sin x} + sqrt{1-sin x}}{sqrt{1+sin x} - sqrt{1-sin x}}$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 21 at 15:26

























                      answered Jan 19 at 20:36









                      Jonas De SchouwerJonas De Schouwer

                      3518




                      3518












                      • $begingroup$
                        Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
                        $endgroup$
                        – rv7
                        Jan 21 at 15:10




















                      • $begingroup$
                        Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
                        $endgroup$
                        – rv7
                        Jan 21 at 15:10


















                      $begingroup$
                      Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
                      $endgroup$
                      – rv7
                      Jan 21 at 15:10






                      $begingroup$
                      Yet another way of solving the problem. But, you forgot to mention $pm$ in sixth line before cot x/2
                      $endgroup$
                      – rv7
                      Jan 21 at 15:10




















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021289%2fabout-proof-cot-1-left-frac-sqrt1-sin-x-sqrt1-sin-x-sqrt1-sin%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                      Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                      A Topological Invariant for $pi_3(U(n))$