Calculate $intlimits_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx$ using complex analysis technique












3












$begingroup$


In a complex analysis test an exercise asks to calculate ($w in Bbb{R}$): $$displaystyleint_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx$$
Of course I need to solve it with complex analysis technique. I have used all the tricks I know such as integrate on a semi-circumference of radius $R$ in $Bbb{C}$ and then let $R to infty$ but everything I have tried to do just seemed useless. Thank you for every hint or solution to this problem!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: this function is holomorfic ( in particular it is defined in x=0 ).
    $endgroup$
    – Jakub Andruszkiewicz
    Jan 19 at 21:05










  • $begingroup$
    @JakubAndruszkiewicz I know, in $x=0$ there is a removable singularity but still I can't proceed, do you have any other hint?
    $endgroup$
    – edo1998
    Jan 19 at 21:08
















3












$begingroup$


In a complex analysis test an exercise asks to calculate ($w in Bbb{R}$): $$displaystyleint_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx$$
Of course I need to solve it with complex analysis technique. I have used all the tricks I know such as integrate on a semi-circumference of radius $R$ in $Bbb{C}$ and then let $R to infty$ but everything I have tried to do just seemed useless. Thank you for every hint or solution to this problem!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: this function is holomorfic ( in particular it is defined in x=0 ).
    $endgroup$
    – Jakub Andruszkiewicz
    Jan 19 at 21:05










  • $begingroup$
    @JakubAndruszkiewicz I know, in $x=0$ there is a removable singularity but still I can't proceed, do you have any other hint?
    $endgroup$
    – edo1998
    Jan 19 at 21:08














3












3








3





$begingroup$


In a complex analysis test an exercise asks to calculate ($w in Bbb{R}$): $$displaystyleint_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx$$
Of course I need to solve it with complex analysis technique. I have used all the tricks I know such as integrate on a semi-circumference of radius $R$ in $Bbb{C}$ and then let $R to infty$ but everything I have tried to do just seemed useless. Thank you for every hint or solution to this problem!










share|cite|improve this question











$endgroup$




In a complex analysis test an exercise asks to calculate ($w in Bbb{R}$): $$displaystyleint_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx$$
Of course I need to solve it with complex analysis technique. I have used all the tricks I know such as integrate on a semi-circumference of radius $R$ in $Bbb{C}$ and then let $R to infty$ but everything I have tried to do just seemed useless. Thank you for every hint or solution to this problem!







integration complex-analysis definite-integrals improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 20 at 9:05









Martin Sleziak

44.8k10119272




44.8k10119272










asked Jan 19 at 20:53









edo1998edo1998

419113




419113








  • 1




    $begingroup$
    Hint: this function is holomorfic ( in particular it is defined in x=0 ).
    $endgroup$
    – Jakub Andruszkiewicz
    Jan 19 at 21:05










  • $begingroup$
    @JakubAndruszkiewicz I know, in $x=0$ there is a removable singularity but still I can't proceed, do you have any other hint?
    $endgroup$
    – edo1998
    Jan 19 at 21:08














  • 1




    $begingroup$
    Hint: this function is holomorfic ( in particular it is defined in x=0 ).
    $endgroup$
    – Jakub Andruszkiewicz
    Jan 19 at 21:05










  • $begingroup$
    @JakubAndruszkiewicz I know, in $x=0$ there is a removable singularity but still I can't proceed, do you have any other hint?
    $endgroup$
    – edo1998
    Jan 19 at 21:08








1




1




$begingroup$
Hint: this function is holomorfic ( in particular it is defined in x=0 ).
$endgroup$
– Jakub Andruszkiewicz
Jan 19 at 21:05




$begingroup$
Hint: this function is holomorfic ( in particular it is defined in x=0 ).
$endgroup$
– Jakub Andruszkiewicz
Jan 19 at 21:05












$begingroup$
@JakubAndruszkiewicz I know, in $x=0$ there is a removable singularity but still I can't proceed, do you have any other hint?
$endgroup$
– edo1998
Jan 19 at 21:08




$begingroup$
@JakubAndruszkiewicz I know, in $x=0$ there is a removable singularity but still I can't proceed, do you have any other hint?
$endgroup$
– edo1998
Jan 19 at 21:08










3 Answers
3






active

oldest

votes


















5












$begingroup$

If I had to use complex methods in this, the place I'd do it is in proving$$int_{mathbb{R}}frac{sin^{2}x}{x^{2}}dx=pi$$(e.g. by the residue theorem; see here for the gory details) so$$left|kright|pi=int_{mathbb{R}}frac{sin^{2}kx}{x^{2}}dx=int_{mathbb{R}}frac{1-cos2kx}{2x^{2}}dx.$$Hence$$int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx\=frac{pi}{4}left(left|w-2right|+left|w+2right|-2left|wright|right).$$As a sanity check, the case $w=0$ needs to give $pi$, and lo and behold it does.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
    $endgroup$
    – edo1998
    Jan 19 at 22:01








  • 1




    $begingroup$
    @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
    $endgroup$
    – J.G.
    Jan 19 at 22:02










  • $begingroup$
    Can you please explain in more detail how did the absolute values appear in the answer.
    $endgroup$
    – user
    Jan 19 at 22:19










  • $begingroup$
    @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
    $endgroup$
    – J.G.
    Jan 19 at 22:22










  • $begingroup$
    I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
    $endgroup$
    – user
    Jan 19 at 22:33



















1












$begingroup$

This is certainly not a complex analytic method, but Fourier inversion formula also can give you the result. It holds that
$$
int_{-1}^1 e^{-ixi x}dx=frac{2sin xi}{xi}.
$$
Let $f(x) = 1_{[-1,1]}(x)$. This shows $widehat{f}(xi)=frac{2sin xi}{xi}$ and therefore, $widehat{(f*f)}(xi)=f(xi)^2=4frac{2sin^2 xi}{xi^2}$.

The given integral is
$$begin{eqnarray}
int_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx&=&int_{-infty}^{infty}frac{sin^2(x)e^{iwx}}{x^2}dx\
&=&2pi mathcal{F}^{-1}left[frac{sin^2 x}{x^2}right](w)\
&=&frac{pi}{2}(f*f)(w).
end{eqnarray}$$
Finally, we have
$$begin{eqnarray}
(f*f)(w)&=&int f(w-y)f(y)dy\
&=&int_{|w-y|<1,|y|<1}dy\
&=&begin{cases}2-w,quad win[0,2)\2+w,quad win(-2,0]\0,quad|w|>2end{cases}\
&=&(2-|w|)1_{|w|<2}.
end{eqnarray}$$
This gives that the given integral is equal to
$$
frac{pi}{2}(2-|w|)1_{|w|<2}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I'll look at your answer when I'll have the knowledge to understand it!
    $endgroup$
    – edo1998
    Jan 19 at 22:31






  • 1




    $begingroup$
    @edo1998 I hope it will help you soon! :)
    $endgroup$
    – Song
    Jan 19 at 22:32



















0












$begingroup$

$$I(w)=int_{-infty}^inftyfrac{sin^2(x)cos(wx)}{x^2}dx$$
$$I'(w)=-int_{-infty}^inftyfrac{sin^2(x)sin(wx)}{x}$$
$$I''(w)=-int_{-infty}^inftysin^2(x)cos(wx)dx$$
$$I''(w)=-Reint_{-infty}^inftysin^2(x)e^{iwx}dx$$
and then try integration by parts. Alternatively:
$$I(w)=Reint_{-infty}^inftyfrac{sin^2(x)e^{iwx}}{x^2}dx$$
$$I(w)=Reint_{-infty}^inftysin^2(x)sum_{n=0}^inftyfrac{(iw)^nx^{n-2}}{n!}dx$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079815%2fcalculate-int-limits-infty-infty-frac-sin2x-coswxx2dx-using%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    If I had to use complex methods in this, the place I'd do it is in proving$$int_{mathbb{R}}frac{sin^{2}x}{x^{2}}dx=pi$$(e.g. by the residue theorem; see here for the gory details) so$$left|kright|pi=int_{mathbb{R}}frac{sin^{2}kx}{x^{2}}dx=int_{mathbb{R}}frac{1-cos2kx}{2x^{2}}dx.$$Hence$$int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx\=frac{pi}{4}left(left|w-2right|+left|w+2right|-2left|wright|right).$$As a sanity check, the case $w=0$ needs to give $pi$, and lo and behold it does.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
      $endgroup$
      – edo1998
      Jan 19 at 22:01








    • 1




      $begingroup$
      @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
      $endgroup$
      – J.G.
      Jan 19 at 22:02










    • $begingroup$
      Can you please explain in more detail how did the absolute values appear in the answer.
      $endgroup$
      – user
      Jan 19 at 22:19










    • $begingroup$
      @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
      $endgroup$
      – J.G.
      Jan 19 at 22:22










    • $begingroup$
      I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
      $endgroup$
      – user
      Jan 19 at 22:33
















    5












    $begingroup$

    If I had to use complex methods in this, the place I'd do it is in proving$$int_{mathbb{R}}frac{sin^{2}x}{x^{2}}dx=pi$$(e.g. by the residue theorem; see here for the gory details) so$$left|kright|pi=int_{mathbb{R}}frac{sin^{2}kx}{x^{2}}dx=int_{mathbb{R}}frac{1-cos2kx}{2x^{2}}dx.$$Hence$$int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx\=frac{pi}{4}left(left|w-2right|+left|w+2right|-2left|wright|right).$$As a sanity check, the case $w=0$ needs to give $pi$, and lo and behold it does.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
      $endgroup$
      – edo1998
      Jan 19 at 22:01








    • 1




      $begingroup$
      @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
      $endgroup$
      – J.G.
      Jan 19 at 22:02










    • $begingroup$
      Can you please explain in more detail how did the absolute values appear in the answer.
      $endgroup$
      – user
      Jan 19 at 22:19










    • $begingroup$
      @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
      $endgroup$
      – J.G.
      Jan 19 at 22:22










    • $begingroup$
      I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
      $endgroup$
      – user
      Jan 19 at 22:33














    5












    5








    5





    $begingroup$

    If I had to use complex methods in this, the place I'd do it is in proving$$int_{mathbb{R}}frac{sin^{2}x}{x^{2}}dx=pi$$(e.g. by the residue theorem; see here for the gory details) so$$left|kright|pi=int_{mathbb{R}}frac{sin^{2}kx}{x^{2}}dx=int_{mathbb{R}}frac{1-cos2kx}{2x^{2}}dx.$$Hence$$int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx\=frac{pi}{4}left(left|w-2right|+left|w+2right|-2left|wright|right).$$As a sanity check, the case $w=0$ needs to give $pi$, and lo and behold it does.






    share|cite|improve this answer









    $endgroup$



    If I had to use complex methods in this, the place I'd do it is in proving$$int_{mathbb{R}}frac{sin^{2}x}{x^{2}}dx=pi$$(e.g. by the residue theorem; see here for the gory details) so$$left|kright|pi=int_{mathbb{R}}frac{sin^{2}kx}{x^{2}}dx=int_{mathbb{R}}frac{1-cos2kx}{2x^{2}}dx.$$Hence$$int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx\=frac{pi}{4}left(left|w-2right|+left|w+2right|-2left|wright|right).$$As a sanity check, the case $w=0$ needs to give $pi$, and lo and behold it does.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 19 at 21:54









    J.G.J.G.

    28.4k22845




    28.4k22845












    • $begingroup$
      What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
      $endgroup$
      – edo1998
      Jan 19 at 22:01








    • 1




      $begingroup$
      @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
      $endgroup$
      – J.G.
      Jan 19 at 22:02










    • $begingroup$
      Can you please explain in more detail how did the absolute values appear in the answer.
      $endgroup$
      – user
      Jan 19 at 22:19










    • $begingroup$
      @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
      $endgroup$
      – J.G.
      Jan 19 at 22:22










    • $begingroup$
      I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
      $endgroup$
      – user
      Jan 19 at 22:33


















    • $begingroup$
      What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
      $endgroup$
      – edo1998
      Jan 19 at 22:01








    • 1




      $begingroup$
      @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
      $endgroup$
      – J.G.
      Jan 19 at 22:02










    • $begingroup$
      Can you please explain in more detail how did the absolute values appear in the answer.
      $endgroup$
      – user
      Jan 19 at 22:19










    • $begingroup$
      @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
      $endgroup$
      – J.G.
      Jan 19 at 22:22










    • $begingroup$
      I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
      $endgroup$
      – user
      Jan 19 at 22:33
















    $begingroup$
    What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
    $endgroup$
    – edo1998
    Jan 19 at 22:01






    $begingroup$
    What have you done in this equality? $int_{mathbb{R}}frac{sin^{2}xcos wx}{x^{2}}dx=int_{mathbb{R}}frac{2cos wx-cosleft(w-2right)x-cosleft(w+2right)x}{4x^{2}}dx$
    $endgroup$
    – edo1998
    Jan 19 at 22:01






    1




    1




    $begingroup$
    @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
    $endgroup$
    – J.G.
    Jan 19 at 22:02




    $begingroup$
    @edo1998 $sin^2x=(1-cos 2x)/2$ followed by the product-of-two-cosines-as-sum-of-two-cosines formula.
    $endgroup$
    – J.G.
    Jan 19 at 22:02












    $begingroup$
    Can you please explain in more detail how did the absolute values appear in the answer.
    $endgroup$
    – user
    Jan 19 at 22:19




    $begingroup$
    Can you please explain in more detail how did the absolute values appear in the answer.
    $endgroup$
    – user
    Jan 19 at 22:19












    $begingroup$
    @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
    $endgroup$
    – J.G.
    Jan 19 at 22:22




    $begingroup$
    @user While the cases $k=0,,k>0$ are separately trivial, the obvious substitution $y=kx$ induces a sign change if $k<0$ due to exchanging the $pminfty$ limits. Another way to see it is the integrand is even in $k$.
    $endgroup$
    – J.G.
    Jan 19 at 22:22












    $begingroup$
    I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
    $endgroup$
    – user
    Jan 19 at 22:33




    $begingroup$
    I know that the absolute value is the correct result. From the attached drawing it is however not clear how to obtain it from the residue theorem. :)
    $endgroup$
    – user
    Jan 19 at 22:33











    1












    $begingroup$

    This is certainly not a complex analytic method, but Fourier inversion formula also can give you the result. It holds that
    $$
    int_{-1}^1 e^{-ixi x}dx=frac{2sin xi}{xi}.
    $$
    Let $f(x) = 1_{[-1,1]}(x)$. This shows $widehat{f}(xi)=frac{2sin xi}{xi}$ and therefore, $widehat{(f*f)}(xi)=f(xi)^2=4frac{2sin^2 xi}{xi^2}$.

    The given integral is
    $$begin{eqnarray}
    int_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx&=&int_{-infty}^{infty}frac{sin^2(x)e^{iwx}}{x^2}dx\
    &=&2pi mathcal{F}^{-1}left[frac{sin^2 x}{x^2}right](w)\
    &=&frac{pi}{2}(f*f)(w).
    end{eqnarray}$$
    Finally, we have
    $$begin{eqnarray}
    (f*f)(w)&=&int f(w-y)f(y)dy\
    &=&int_{|w-y|<1,|y|<1}dy\
    &=&begin{cases}2-w,quad win[0,2)\2+w,quad win(-2,0]\0,quad|w|>2end{cases}\
    &=&(2-|w|)1_{|w|<2}.
    end{eqnarray}$$
    This gives that the given integral is equal to
    $$
    frac{pi}{2}(2-|w|)1_{|w|<2}.
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I'll look at your answer when I'll have the knowledge to understand it!
      $endgroup$
      – edo1998
      Jan 19 at 22:31






    • 1




      $begingroup$
      @edo1998 I hope it will help you soon! :)
      $endgroup$
      – Song
      Jan 19 at 22:32
















    1












    $begingroup$

    This is certainly not a complex analytic method, but Fourier inversion formula also can give you the result. It holds that
    $$
    int_{-1}^1 e^{-ixi x}dx=frac{2sin xi}{xi}.
    $$
    Let $f(x) = 1_{[-1,1]}(x)$. This shows $widehat{f}(xi)=frac{2sin xi}{xi}$ and therefore, $widehat{(f*f)}(xi)=f(xi)^2=4frac{2sin^2 xi}{xi^2}$.

    The given integral is
    $$begin{eqnarray}
    int_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx&=&int_{-infty}^{infty}frac{sin^2(x)e^{iwx}}{x^2}dx\
    &=&2pi mathcal{F}^{-1}left[frac{sin^2 x}{x^2}right](w)\
    &=&frac{pi}{2}(f*f)(w).
    end{eqnarray}$$
    Finally, we have
    $$begin{eqnarray}
    (f*f)(w)&=&int f(w-y)f(y)dy\
    &=&int_{|w-y|<1,|y|<1}dy\
    &=&begin{cases}2-w,quad win[0,2)\2+w,quad win(-2,0]\0,quad|w|>2end{cases}\
    &=&(2-|w|)1_{|w|<2}.
    end{eqnarray}$$
    This gives that the given integral is equal to
    $$
    frac{pi}{2}(2-|w|)1_{|w|<2}.
    $$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      I'll look at your answer when I'll have the knowledge to understand it!
      $endgroup$
      – edo1998
      Jan 19 at 22:31






    • 1




      $begingroup$
      @edo1998 I hope it will help you soon! :)
      $endgroup$
      – Song
      Jan 19 at 22:32














    1












    1








    1





    $begingroup$

    This is certainly not a complex analytic method, but Fourier inversion formula also can give you the result. It holds that
    $$
    int_{-1}^1 e^{-ixi x}dx=frac{2sin xi}{xi}.
    $$
    Let $f(x) = 1_{[-1,1]}(x)$. This shows $widehat{f}(xi)=frac{2sin xi}{xi}$ and therefore, $widehat{(f*f)}(xi)=f(xi)^2=4frac{2sin^2 xi}{xi^2}$.

    The given integral is
    $$begin{eqnarray}
    int_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx&=&int_{-infty}^{infty}frac{sin^2(x)e^{iwx}}{x^2}dx\
    &=&2pi mathcal{F}^{-1}left[frac{sin^2 x}{x^2}right](w)\
    &=&frac{pi}{2}(f*f)(w).
    end{eqnarray}$$
    Finally, we have
    $$begin{eqnarray}
    (f*f)(w)&=&int f(w-y)f(y)dy\
    &=&int_{|w-y|<1,|y|<1}dy\
    &=&begin{cases}2-w,quad win[0,2)\2+w,quad win(-2,0]\0,quad|w|>2end{cases}\
    &=&(2-|w|)1_{|w|<2}.
    end{eqnarray}$$
    This gives that the given integral is equal to
    $$
    frac{pi}{2}(2-|w|)1_{|w|<2}.
    $$






    share|cite|improve this answer











    $endgroup$



    This is certainly not a complex analytic method, but Fourier inversion formula also can give you the result. It holds that
    $$
    int_{-1}^1 e^{-ixi x}dx=frac{2sin xi}{xi}.
    $$
    Let $f(x) = 1_{[-1,1]}(x)$. This shows $widehat{f}(xi)=frac{2sin xi}{xi}$ and therefore, $widehat{(f*f)}(xi)=f(xi)^2=4frac{2sin^2 xi}{xi^2}$.

    The given integral is
    $$begin{eqnarray}
    int_{-infty}^{infty}frac{sin^2(x)cos(wx)}{x^2}dx&=&int_{-infty}^{infty}frac{sin^2(x)e^{iwx}}{x^2}dx\
    &=&2pi mathcal{F}^{-1}left[frac{sin^2 x}{x^2}right](w)\
    &=&frac{pi}{2}(f*f)(w).
    end{eqnarray}$$
    Finally, we have
    $$begin{eqnarray}
    (f*f)(w)&=&int f(w-y)f(y)dy\
    &=&int_{|w-y|<1,|y|<1}dy\
    &=&begin{cases}2-w,quad win[0,2)\2+w,quad win(-2,0]\0,quad|w|>2end{cases}\
    &=&(2-|w|)1_{|w|<2}.
    end{eqnarray}$$
    This gives that the given integral is equal to
    $$
    frac{pi}{2}(2-|w|)1_{|w|<2}.
    $$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Jan 19 at 22:20

























    answered Jan 19 at 22:13









    SongSong

    16.2k1739




    16.2k1739












    • $begingroup$
      I'll look at your answer when I'll have the knowledge to understand it!
      $endgroup$
      – edo1998
      Jan 19 at 22:31






    • 1




      $begingroup$
      @edo1998 I hope it will help you soon! :)
      $endgroup$
      – Song
      Jan 19 at 22:32


















    • $begingroup$
      I'll look at your answer when I'll have the knowledge to understand it!
      $endgroup$
      – edo1998
      Jan 19 at 22:31






    • 1




      $begingroup$
      @edo1998 I hope it will help you soon! :)
      $endgroup$
      – Song
      Jan 19 at 22:32
















    $begingroup$
    I'll look at your answer when I'll have the knowledge to understand it!
    $endgroup$
    – edo1998
    Jan 19 at 22:31




    $begingroup$
    I'll look at your answer when I'll have the knowledge to understand it!
    $endgroup$
    – edo1998
    Jan 19 at 22:31




    1




    1




    $begingroup$
    @edo1998 I hope it will help you soon! :)
    $endgroup$
    – Song
    Jan 19 at 22:32




    $begingroup$
    @edo1998 I hope it will help you soon! :)
    $endgroup$
    – Song
    Jan 19 at 22:32











    0












    $begingroup$

    $$I(w)=int_{-infty}^inftyfrac{sin^2(x)cos(wx)}{x^2}dx$$
    $$I'(w)=-int_{-infty}^inftyfrac{sin^2(x)sin(wx)}{x}$$
    $$I''(w)=-int_{-infty}^inftysin^2(x)cos(wx)dx$$
    $$I''(w)=-Reint_{-infty}^inftysin^2(x)e^{iwx}dx$$
    and then try integration by parts. Alternatively:
    $$I(w)=Reint_{-infty}^inftyfrac{sin^2(x)e^{iwx}}{x^2}dx$$
    $$I(w)=Reint_{-infty}^inftysin^2(x)sum_{n=0}^inftyfrac{(iw)^nx^{n-2}}{n!}dx$$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      $$I(w)=int_{-infty}^inftyfrac{sin^2(x)cos(wx)}{x^2}dx$$
      $$I'(w)=-int_{-infty}^inftyfrac{sin^2(x)sin(wx)}{x}$$
      $$I''(w)=-int_{-infty}^inftysin^2(x)cos(wx)dx$$
      $$I''(w)=-Reint_{-infty}^inftysin^2(x)e^{iwx}dx$$
      and then try integration by parts. Alternatively:
      $$I(w)=Reint_{-infty}^inftyfrac{sin^2(x)e^{iwx}}{x^2}dx$$
      $$I(w)=Reint_{-infty}^inftysin^2(x)sum_{n=0}^inftyfrac{(iw)^nx^{n-2}}{n!}dx$$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        $$I(w)=int_{-infty}^inftyfrac{sin^2(x)cos(wx)}{x^2}dx$$
        $$I'(w)=-int_{-infty}^inftyfrac{sin^2(x)sin(wx)}{x}$$
        $$I''(w)=-int_{-infty}^inftysin^2(x)cos(wx)dx$$
        $$I''(w)=-Reint_{-infty}^inftysin^2(x)e^{iwx}dx$$
        and then try integration by parts. Alternatively:
        $$I(w)=Reint_{-infty}^inftyfrac{sin^2(x)e^{iwx}}{x^2}dx$$
        $$I(w)=Reint_{-infty}^inftysin^2(x)sum_{n=0}^inftyfrac{(iw)^nx^{n-2}}{n!}dx$$






        share|cite|improve this answer









        $endgroup$



        $$I(w)=int_{-infty}^inftyfrac{sin^2(x)cos(wx)}{x^2}dx$$
        $$I'(w)=-int_{-infty}^inftyfrac{sin^2(x)sin(wx)}{x}$$
        $$I''(w)=-int_{-infty}^inftysin^2(x)cos(wx)dx$$
        $$I''(w)=-Reint_{-infty}^inftysin^2(x)e^{iwx}dx$$
        and then try integration by parts. Alternatively:
        $$I(w)=Reint_{-infty}^inftyfrac{sin^2(x)e^{iwx}}{x^2}dx$$
        $$I(w)=Reint_{-infty}^inftysin^2(x)sum_{n=0}^inftyfrac{(iw)^nx^{n-2}}{n!}dx$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 19 at 21:33









        Henry LeeHenry Lee

        2,054219




        2,054219






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079815%2fcalculate-int-limits-infty-infty-frac-sin2x-coswxx2dx-using%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$