calculate this line integral
$begingroup$
this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{t})$
$||r'(t)||=sqrt{sin^2{t}+1}$
I have to calculate: $int{(y+1)}ds$
So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$
Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.
integration indefinite-integrals line-integrals
$endgroup$
add a comment |
$begingroup$
this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{t})$
$||r'(t)||=sqrt{sin^2{t}+1}$
I have to calculate: $int{(y+1)}ds$
So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$
Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.
integration indefinite-integrals line-integrals
$endgroup$
2
$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43
$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45
$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52
add a comment |
$begingroup$
this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{t})$
$||r'(t)||=sqrt{sin^2{t}+1}$
I have to calculate: $int{(y+1)}ds$
So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$
Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.
integration indefinite-integrals line-integrals
$endgroup$
this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{t})$
$||r'(t)||=sqrt{sin^2{t}+1}$
I have to calculate: $int{(y+1)}ds$
So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$
Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.
integration indefinite-integrals line-integrals
integration indefinite-integrals line-integrals
edited Jan 19 at 23:52


David G. Stork
11k41432
11k41432
asked Jan 19 at 23:31


NPLSNPLS
7612
7612
2
$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43
$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45
$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52
add a comment |
2
$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43
$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45
$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52
2
2
$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43
$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43
$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45
$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45
$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52
$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)
$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$
Calculate: $int{(y+1)}ds$
-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$
Apply subsitution $u = sin^2(frac{t}{2}) + 1$
$du = frac{sin{t}}{2} dt$
$t = 0, u = 1. t = 3pi,u = 2.$
$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$
$endgroup$
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079968%2fcalculate-this-line-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)
$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$
Calculate: $int{(y+1)}ds$
-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$
Apply subsitution $u = sin^2(frac{t}{2}) + 1$
$du = frac{sin{t}}{2} dt$
$t = 0, u = 1. t = 3pi,u = 2.$
$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$
$endgroup$
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
add a comment |
$begingroup$
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)
$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$
Calculate: $int{(y+1)}ds$
-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$
Apply subsitution $u = sin^2(frac{t}{2}) + 1$
$du = frac{sin{t}}{2} dt$
$t = 0, u = 1. t = 3pi,u = 2.$
$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$
$endgroup$
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
add a comment |
$begingroup$
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)
$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$
Calculate: $int{(y+1)}ds$
-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$
Apply subsitution $u = sin^2(frac{t}{2}) + 1$
$du = frac{sin{t}}{2} dt$
$t = 0, u = 1. t = 3pi,u = 2.$
$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$
$endgroup$
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$
$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)
$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$
Calculate: $int{(y+1)}ds$
-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$
Apply subsitution $u = sin^2(frac{t}{2}) + 1$
$du = frac{sin{t}}{2} dt$
$t = 0, u = 1. t = 3pi,u = 2.$
$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$
edited Jan 21 at 9:06
answered Jan 20 at 2:21
Gareth MaGareth Ma
526215
526215
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
add a comment |
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079968%2fcalculate-this-line-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43
$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45
$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52