calculate this line integral












0












$begingroup$


this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{t})$



$||r'(t)||=sqrt{sin^2{t}+1}$



I have to calculate: $int{(y+1)}ds$



So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$



Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
    $endgroup$
    – orion
    Jan 19 at 23:43










  • $begingroup$
    @orion it’s $2cosfrac{t}{2}$, so he doesn’t.
    $endgroup$
    – cluelessatthis
    Jan 20 at 0:45












  • $begingroup$
    It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
    $endgroup$
    – orion
    Jan 20 at 0:52


















0












$begingroup$


this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{t})$



$||r'(t)||=sqrt{sin^2{t}+1}$



I have to calculate: $int{(y+1)}ds$



So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$



Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
    $endgroup$
    – orion
    Jan 19 at 23:43










  • $begingroup$
    @orion it’s $2cosfrac{t}{2}$, so he doesn’t.
    $endgroup$
    – cluelessatthis
    Jan 20 at 0:45












  • $begingroup$
    It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
    $endgroup$
    – orion
    Jan 20 at 0:52
















0












0








0





$begingroup$


this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{t})$



$||r'(t)||=sqrt{sin^2{t}+1}$



I have to calculate: $int{(y+1)}ds$



So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$



Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.










share|cite|improve this question











$endgroup$




this is my curve :
$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{t})$



$||r'(t)||=sqrt{sin^2{t}+1}$



I have to calculate: $int{(y+1)}ds$



So I have : $int_{0}^{3pi}sin tsqrt{sin^2{t}+1}dt$



Is this right? If it is, can you help me figure out how to compute this integral? I tried a lot of substitution but I can't get it any simpler.







integration indefinite-integrals line-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 23:52









David G. Stork

11k41432




11k41432










asked Jan 19 at 23:31









NPLSNPLS

7612




7612








  • 2




    $begingroup$
    You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
    $endgroup$
    – orion
    Jan 19 at 23:43










  • $begingroup$
    @orion it’s $2cosfrac{t}{2}$, so he doesn’t.
    $endgroup$
    – cluelessatthis
    Jan 20 at 0:45












  • $begingroup$
    It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
    $endgroup$
    – orion
    Jan 20 at 0:52
















  • 2




    $begingroup$
    You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
    $endgroup$
    – orion
    Jan 19 at 23:43










  • $begingroup$
    @orion it’s $2cosfrac{t}{2}$, so he doesn’t.
    $endgroup$
    – cluelessatthis
    Jan 20 at 0:45












  • $begingroup$
    It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
    $endgroup$
    – orion
    Jan 20 at 0:52










2




2




$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43




$begingroup$
You have a mistake in differentiation of $cosfrac{t}{2}$ (you skipped the 1/2 in $sin$).
$endgroup$
– orion
Jan 19 at 23:43












$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45






$begingroup$
@orion it’s $2cosfrac{t}{2}$, so he doesn’t.
$endgroup$
– cluelessatthis
Jan 20 at 0:45














$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52






$begingroup$
It should be $-sin frac{t}{2}$, not $-sin t$. The half doesn't disappear from inside the trigonometric function after differentiation.
$endgroup$
– orion
Jan 20 at 0:52












1 Answer
1






active

oldest

votes


















3












$begingroup$

$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)



$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$



Calculate: $int{(y+1)}ds$



-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$



Apply subsitution $u = sin^2(frac{t}{2}) + 1$



$du = frac{sin{t}}{2} dt$



$t = 0, u = 1. t = 3pi,u = 2.$



$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
    $endgroup$
    – NPLS
    Jan 20 at 8:44










  • $begingroup$
    $u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
    $endgroup$
    – Gareth Ma
    Jan 21 at 9:05













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079968%2fcalculate-this-line-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)



$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$



Calculate: $int{(y+1)}ds$



-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$



Apply subsitution $u = sin^2(frac{t}{2}) + 1$



$du = frac{sin{t}}{2} dt$



$t = 0, u = 1. t = 3pi,u = 2.$



$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
    $endgroup$
    – NPLS
    Jan 20 at 8:44










  • $begingroup$
    $u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
    $endgroup$
    – Gareth Ma
    Jan 21 at 9:05


















3












$begingroup$

$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)



$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$



Calculate: $int{(y+1)}ds$



-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$



Apply subsitution $u = sin^2(frac{t}{2}) + 1$



$du = frac{sin{t}}{2} dt$



$t = 0, u = 1. t = 3pi,u = 2.$



$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
    $endgroup$
    – NPLS
    Jan 20 at 8:44










  • $begingroup$
    $u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
    $endgroup$
    – Gareth Ma
    Jan 21 at 9:05
















3












3








3





$begingroup$

$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)



$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$



Calculate: $int{(y+1)}ds$



-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$



Apply subsitution $u = sin^2(frac{t}{2}) + 1$



$du = frac{sin{t}}{2} dt$



$t = 0, u = 1. t = 3pi,u = 2.$



$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$






share|cite|improve this answer











$endgroup$



$r(t)=(cos{t},sin{t}-1,2cos{frac{t}{2}})$ , $t=[0,3pi]$



$r'(t)=(-sin{t},cos{t},-sin{frac{t}{2}})$ <- You forgot sin(t/2)



$||r'(t)||=sqrt{sin^2{frac{t}{2}}+1}$



Calculate: $int{(y+1)}ds$



-> $I = int_{0}^{3pi}sin tsqrt{sin^2{frac{t}{2}}+1}dt$



Apply subsitution $u = sin^2(frac{t}{2}) + 1$



$du = frac{sin{t}}{2} dt$



$t = 0, u = 1. t = 3pi,u = 2.$



$I = 2int_{1}^{2}sqrt{u}textrm{ }du = frac{4}{3}(2^frac{3}{2}-1^frac{3}{2})=frac{4}{3}times(2sqrt{2}-1)=frac{8sqrt{2}-4}{3}$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 21 at 9:06

























answered Jan 20 at 2:21









Gareth MaGareth Ma

526215




526215












  • $begingroup$
    why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
    $endgroup$
    – NPLS
    Jan 20 at 8:44










  • $begingroup$
    $u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
    $endgroup$
    – Gareth Ma
    Jan 21 at 9:05




















  • $begingroup$
    why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
    $endgroup$
    – NPLS
    Jan 20 at 8:44










  • $begingroup$
    $u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
    $endgroup$
    – Gareth Ma
    Jan 21 at 9:05


















$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44




$begingroup$
why is It $du=frac{sint}{2}$ ? how did you get $frac{sint}{2}$?
$endgroup$
– NPLS
Jan 20 at 8:44












$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05






$begingroup$
$u = sin^2(frac{t}{2}); du = 2sin(frac{t}{2})cos(frac{t}{2})times frac{1}{2}$ By Chain Rule. Simplify.
$endgroup$
– Gareth Ma
Jan 21 at 9:05




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079968%2fcalculate-this-line-integral%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith