Compare column values based on list in Pandas dataframe
I have 2 dataframes as below:
df1:
ID list value listA valueA listB valueB
1 list1 D1 list1 D1 list1 D1
2 list2 D1
3 list1 D3 list2 D3
4 list2 D1 list2 D1 list1 D3
5 list2 D2 list2 D2 list2 D2
6 list2 D3 list1 D3 list1 D4
df2:
list1 list2
D1 456
D2 D2
33 D31
D4 245
EE D5
D5 D6
I'm trying to generate a final df based on the below validations
-> If value of list in df1 is list1, then the corresponding data of "value" in df1 should be one among the values of the list1 column in df2 3.
-> If value of list in df1 is list2, then the corresponding data of "value" in df1 should be one among the values of the list2 column in df2.
Expected Result df:
ID list value listA valueA listB valueB Error
1 list1 D1 list1 D1 list1 D1 no mismatch
2 list2 D1 valueA mismatch
3 list1 D3 list2 D3 value, valueB mismatch
4 list2 D1 list2 D1 list1 D3 value,valueA&valueB mismatch
5 list2 D2 list2 D2 list2 D2 no mismatch
6 list2 D3 list1 D3 list1 D4 value, valueA mismatch
pandas dataframe
add a comment |
I have 2 dataframes as below:
df1:
ID list value listA valueA listB valueB
1 list1 D1 list1 D1 list1 D1
2 list2 D1
3 list1 D3 list2 D3
4 list2 D1 list2 D1 list1 D3
5 list2 D2 list2 D2 list2 D2
6 list2 D3 list1 D3 list1 D4
df2:
list1 list2
D1 456
D2 D2
33 D31
D4 245
EE D5
D5 D6
I'm trying to generate a final df based on the below validations
-> If value of list in df1 is list1, then the corresponding data of "value" in df1 should be one among the values of the list1 column in df2 3.
-> If value of list in df1 is list2, then the corresponding data of "value" in df1 should be one among the values of the list2 column in df2.
Expected Result df:
ID list value listA valueA listB valueB Error
1 list1 D1 list1 D1 list1 D1 no mismatch
2 list2 D1 valueA mismatch
3 list1 D3 list2 D3 value, valueB mismatch
4 list2 D1 list2 D1 list1 D3 value,valueA&valueB mismatch
5 list2 D2 list2 D2 list2 D2 no mismatch
6 list2 D3 list1 D3 list1 D4 value, valueA mismatch
pandas dataframe
Why asking same question twice? Your previous question
– AkshayNevrekar
Nov 22 '18 at 11:49
1
@Sociopath - Yes, I did split the question into two, as they deal with different validations, just to avoid confusion
– Osceria
Nov 22 '18 at 11:55
add a comment |
I have 2 dataframes as below:
df1:
ID list value listA valueA listB valueB
1 list1 D1 list1 D1 list1 D1
2 list2 D1
3 list1 D3 list2 D3
4 list2 D1 list2 D1 list1 D3
5 list2 D2 list2 D2 list2 D2
6 list2 D3 list1 D3 list1 D4
df2:
list1 list2
D1 456
D2 D2
33 D31
D4 245
EE D5
D5 D6
I'm trying to generate a final df based on the below validations
-> If value of list in df1 is list1, then the corresponding data of "value" in df1 should be one among the values of the list1 column in df2 3.
-> If value of list in df1 is list2, then the corresponding data of "value" in df1 should be one among the values of the list2 column in df2.
Expected Result df:
ID list value listA valueA listB valueB Error
1 list1 D1 list1 D1 list1 D1 no mismatch
2 list2 D1 valueA mismatch
3 list1 D3 list2 D3 value, valueB mismatch
4 list2 D1 list2 D1 list1 D3 value,valueA&valueB mismatch
5 list2 D2 list2 D2 list2 D2 no mismatch
6 list2 D3 list1 D3 list1 D4 value, valueA mismatch
pandas dataframe
I have 2 dataframes as below:
df1:
ID list value listA valueA listB valueB
1 list1 D1 list1 D1 list1 D1
2 list2 D1
3 list1 D3 list2 D3
4 list2 D1 list2 D1 list1 D3
5 list2 D2 list2 D2 list2 D2
6 list2 D3 list1 D3 list1 D4
df2:
list1 list2
D1 456
D2 D2
33 D31
D4 245
EE D5
D5 D6
I'm trying to generate a final df based on the below validations
-> If value of list in df1 is list1, then the corresponding data of "value" in df1 should be one among the values of the list1 column in df2 3.
-> If value of list in df1 is list2, then the corresponding data of "value" in df1 should be one among the values of the list2 column in df2.
Expected Result df:
ID list value listA valueA listB valueB Error
1 list1 D1 list1 D1 list1 D1 no mismatch
2 list2 D1 valueA mismatch
3 list1 D3 list2 D3 value, valueB mismatch
4 list2 D1 list2 D1 list1 D3 value,valueA&valueB mismatch
5 list2 D2 list2 D2 list2 D2 no mismatch
6 list2 D3 list1 D3 list1 D4 value, valueA mismatch
pandas dataframe
pandas dataframe
edited Dec 5 '18 at 14:30
Osceria
asked Nov 22 '18 at 11:35
OsceriaOsceria
599
599
Why asking same question twice? Your previous question
– AkshayNevrekar
Nov 22 '18 at 11:49
1
@Sociopath - Yes, I did split the question into two, as they deal with different validations, just to avoid confusion
– Osceria
Nov 22 '18 at 11:55
add a comment |
Why asking same question twice? Your previous question
– AkshayNevrekar
Nov 22 '18 at 11:49
1
@Sociopath - Yes, I did split the question into two, as they deal with different validations, just to avoid confusion
– Osceria
Nov 22 '18 at 11:55
Why asking same question twice? Your previous question
– AkshayNevrekar
Nov 22 '18 at 11:49
Why asking same question twice? Your previous question
– AkshayNevrekar
Nov 22 '18 at 11:49
1
1
@Sociopath - Yes, I did split the question into two, as they deal with different validations, just to avoid confusion
– Osceria
Nov 22 '18 at 11:55
@Sociopath - Yes, I did split the question into two, as they deal with different validations, just to avoid confusion
– Osceria
Nov 22 '18 at 11:55
add a comment |
2 Answers
2
active
oldest
votes
Use GroupBy.transform
with custom function with isin
for boolean mask and set values by numpy.where
:
m = df1.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name]))
df1['Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
print (df1)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
1
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
@Osceria - Problem is missing values are excluded in groupby, solution isdf2 = df2.assign(missing=np.nan)
andm = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
@Osceria - Can you checkm1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?
– jezrael
Dec 3 '18 at 13:36
|
show 6 more comments
You can do the following:
def fun(x, df2):
if x['value'] not in df2[x['list']].tolist():
return 'list mismatch with df2'
else:
return 'No mismatch with df2'
df['Error'] = df.apply(lambda x: fun(x, df2), axis = 1)
print(df)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53430107%2fcompare-column-values-based-on-list-in-pandas-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use GroupBy.transform
with custom function with isin
for boolean mask and set values by numpy.where
:
m = df1.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name]))
df1['Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
print (df1)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
1
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
@Osceria - Problem is missing values are excluded in groupby, solution isdf2 = df2.assign(missing=np.nan)
andm = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
@Osceria - Can you checkm1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?
– jezrael
Dec 3 '18 at 13:36
|
show 6 more comments
Use GroupBy.transform
with custom function with isin
for boolean mask and set values by numpy.where
:
m = df1.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name]))
df1['Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
print (df1)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
1
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
@Osceria - Problem is missing values are excluded in groupby, solution isdf2 = df2.assign(missing=np.nan)
andm = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
@Osceria - Can you checkm1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?
– jezrael
Dec 3 '18 at 13:36
|
show 6 more comments
Use GroupBy.transform
with custom function with isin
for boolean mask and set values by numpy.where
:
m = df1.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name]))
df1['Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
print (df1)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
Use GroupBy.transform
with custom function with isin
for boolean mask and set values by numpy.where
:
m = df1.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name]))
df1['Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
print (df1)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
answered Nov 22 '18 at 11:47


jezraeljezrael
342k25297369
342k25297369
1
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
@Osceria - Problem is missing values are excluded in groupby, solution isdf2 = df2.assign(missing=np.nan)
andm = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
@Osceria - Can you checkm1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?
– jezrael
Dec 3 '18 at 13:36
|
show 6 more comments
1
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
@Osceria - Problem is missing values are excluded in groupby, solution isdf2 = df2.assign(missing=np.nan)
andm = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
@Osceria - Can you checkm1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?
– jezrael
Dec 3 '18 at 13:36
1
1
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
expected results are satisfied
– Osceria
Nov 22 '18 at 13:45
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
the code throws an error when the values are made empty for any row in df1. error - "Length mismatch: Expected axis has 5 elements, new values have 6 elements". Any help with this? @jezrael
– Osceria
Dec 3 '18 at 5:38
@Osceria - Problem is missing values are excluded in groupby, solution is
df2 = df2.assign(missing=np.nan)
and m = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
@Osceria - Problem is missing values are excluded in groupby, solution is
df2 = df2.assign(missing=np.nan)
and m = df1['value'].groupby(df1['list'].fillna('missing')).transform(lambda x: x.isin(df2[x.name]))
– jezrael
Dec 3 '18 at 6:14
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
This change marks the rows with empty values as "list mismatch". Rather it should ignore the rows from validation that have empty values.- @Jezrael
– Osceria
Dec 3 '18 at 13:20
@Osceria - Can you check
m1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?– jezrael
Dec 3 '18 at 13:36
@Osceria - Can you check
m1 = df1['list'].notnull() df11 = df1[m1] m = df11.groupby('list')['value'].transform(lambda x: x.isin(df2[x.name])) df1.loc[m1, 'Error'] = np.where(m, 'No mismatch with df2','list mismatch with df2')
?– jezrael
Dec 3 '18 at 13:36
|
show 6 more comments
You can do the following:
def fun(x, df2):
if x['value'] not in df2[x['list']].tolist():
return 'list mismatch with df2'
else:
return 'No mismatch with df2'
df['Error'] = df.apply(lambda x: fun(x, df2), axis = 1)
print(df)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
add a comment |
You can do the following:
def fun(x, df2):
if x['value'] not in df2[x['list']].tolist():
return 'list mismatch with df2'
else:
return 'No mismatch with df2'
df['Error'] = df.apply(lambda x: fun(x, df2), axis = 1)
print(df)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
add a comment |
You can do the following:
def fun(x, df2):
if x['value'] not in df2[x['list']].tolist():
return 'list mismatch with df2'
else:
return 'No mismatch with df2'
df['Error'] = df.apply(lambda x: fun(x, df2), axis = 1)
print(df)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
You can do the following:
def fun(x, df2):
if x['value'] not in df2[x['list']].tolist():
return 'list mismatch with df2'
else:
return 'No mismatch with df2'
df['Error'] = df.apply(lambda x: fun(x, df2), axis = 1)
print(df)
ID list value Error
0 1 list1 D1 No mismatch with df2
1 2 list1 D2 No mismatch with df2
2 3 list1 D3 list mismatch with df2
3 4 list2 D1 list mismatch with df2
4 5 list2 D2 No mismatch with df2
5 6 list2 D3 list mismatch with df2
edited Nov 22 '18 at 13:15
answered Nov 22 '18 at 11:47


yatuyatu
11.7k31238
11.7k31238
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
add a comment |
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
I get this error - AttributeError: ("'Series' object has no attribute 'list'", 'occurred at index 0')
– Osceria
Nov 22 '18 at 12:25
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Does it worlk now? @Osceria
– yatu
Nov 22 '18 at 12:27
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
Yes Alexandre, the code works fine now.
– Osceria
Nov 22 '18 at 13:44
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53430107%2fcompare-column-values-based-on-list-in-pandas-dataframe%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Why asking same question twice? Your previous question
– AkshayNevrekar
Nov 22 '18 at 11:49
1
@Sociopath - Yes, I did split the question into two, as they deal with different validations, just to avoid confusion
– Osceria
Nov 22 '18 at 11:55