Find a basis for the orthogonal complement of the column space of the following matrix












0












$begingroup$


I was assigned this problem for homework but don't know if I'm tackling it properly..



Find a basis for the orthogonal complement of the column
space of the following matrix



$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$



I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.



I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$



I am confused as to where to go from here. Are the 3rd and 4th columns free variables?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Yes. You can let $x_3$ and $x_4$ be free variables.
    $endgroup$
    – user137731
    Dec 1 '15 at 20:41
















0












$begingroup$


I was assigned this problem for homework but don't know if I'm tackling it properly..



Find a basis for the orthogonal complement of the column
space of the following matrix



$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$



I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.



I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$



I am confused as to where to go from here. Are the 3rd and 4th columns free variables?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Yes. You can let $x_3$ and $x_4$ be free variables.
    $endgroup$
    – user137731
    Dec 1 '15 at 20:41














0












0








0





$begingroup$


I was assigned this problem for homework but don't know if I'm tackling it properly..



Find a basis for the orthogonal complement of the column
space of the following matrix



$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$



I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.



I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$



I am confused as to where to go from here. Are the 3rd and 4th columns free variables?










share|cite|improve this question









$endgroup$




I was assigned this problem for homework but don't know if I'm tackling it properly..



Find a basis for the orthogonal complement of the column
space of the following matrix



$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$



I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.



I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$



I am confused as to where to go from here. Are the 3rd and 4th columns free variables?







linear-algebra






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 1 '15 at 20:35









hairspraygirliehairspraygirlie

307




307












  • $begingroup$
    Yes. You can let $x_3$ and $x_4$ be free variables.
    $endgroup$
    – user137731
    Dec 1 '15 at 20:41


















  • $begingroup$
    Yes. You can let $x_3$ and $x_4$ be free variables.
    $endgroup$
    – user137731
    Dec 1 '15 at 20:41
















$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41




$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41










2 Answers
2






active

oldest

votes


















1












$begingroup$

$$M^Tx=0 \ iff begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$



Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$



Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
    $endgroup$
    – hairspraygirlie
    Dec 1 '15 at 20:48










  • $begingroup$
    No problem. :-)
    $endgroup$
    – user137731
    Dec 1 '15 at 20:50



















0












$begingroup$

In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1555414%2ffind-a-basis-for-the-orthogonal-complement-of-the-column-space-of-the-following%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $$M^Tx=0 \ iff begin{bmatrix}
    1 & 0 & 1 & 0 \
    0 & 1 & 0 & 1 \
    end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$



    Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$



    Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
      $endgroup$
      – hairspraygirlie
      Dec 1 '15 at 20:48










    • $begingroup$
      No problem. :-)
      $endgroup$
      – user137731
      Dec 1 '15 at 20:50
















    1












    $begingroup$

    $$M^Tx=0 \ iff begin{bmatrix}
    1 & 0 & 1 & 0 \
    0 & 1 & 0 & 1 \
    end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$



    Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$



    Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
      $endgroup$
      – hairspraygirlie
      Dec 1 '15 at 20:48










    • $begingroup$
      No problem. :-)
      $endgroup$
      – user137731
      Dec 1 '15 at 20:50














    1












    1








    1





    $begingroup$

    $$M^Tx=0 \ iff begin{bmatrix}
    1 & 0 & 1 & 0 \
    0 & 1 & 0 & 1 \
    end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$



    Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$



    Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.






    share|cite|improve this answer









    $endgroup$



    $$M^Tx=0 \ iff begin{bmatrix}
    1 & 0 & 1 & 0 \
    0 & 1 & 0 & 1 \
    end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$



    Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$



    Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 1 '15 at 20:46







    user137731



















    • $begingroup$
      Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
      $endgroup$
      – hairspraygirlie
      Dec 1 '15 at 20:48










    • $begingroup$
      No problem. :-)
      $endgroup$
      – user137731
      Dec 1 '15 at 20:50


















    • $begingroup$
      Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
      $endgroup$
      – hairspraygirlie
      Dec 1 '15 at 20:48










    • $begingroup$
      No problem. :-)
      $endgroup$
      – user137731
      Dec 1 '15 at 20:50
















    $begingroup$
    Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
    $endgroup$
    – hairspraygirlie
    Dec 1 '15 at 20:48




    $begingroup$
    Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
    $endgroup$
    – hairspraygirlie
    Dec 1 '15 at 20:48












    $begingroup$
    No problem. :-)
    $endgroup$
    – user137731
    Dec 1 '15 at 20:50




    $begingroup$
    No problem. :-)
    $endgroup$
    – user137731
    Dec 1 '15 at 20:50











    0












    $begingroup$

    In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.






        share|cite|improve this answer









        $endgroup$



        In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 1 '15 at 22:27









        amdamd

        31.3k21052




        31.3k21052






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1555414%2ffind-a-basis-for-the-orthogonal-complement-of-the-column-space-of-the-following%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            SQL update select statement

            'app-layout' is not a known element: how to share Component with different Modules