Find a basis for the orthogonal complement of the column space of the following matrix
$begingroup$
I was assigned this problem for homework but don't know if I'm tackling it properly..
Find a basis for the orthogonal complement of the column
space of the following matrix
$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$
I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.
I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$
I am confused as to where to go from here. Are the 3rd and 4th columns free variables?
linear-algebra
$endgroup$
add a comment |
$begingroup$
I was assigned this problem for homework but don't know if I'm tackling it properly..
Find a basis for the orthogonal complement of the column
space of the following matrix
$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$
I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.
I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$
I am confused as to where to go from here. Are the 3rd and 4th columns free variables?
linear-algebra
$endgroup$
$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41
add a comment |
$begingroup$
I was assigned this problem for homework but don't know if I'm tackling it properly..
Find a basis for the orthogonal complement of the column
space of the following matrix
$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$
I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.
I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$
I am confused as to where to go from here. Are the 3rd and 4th columns free variables?
linear-algebra
$endgroup$
I was assigned this problem for homework but don't know if I'm tackling it properly..
Find a basis for the orthogonal complement of the column
space of the following matrix
$
M=
begin{bmatrix}
1 & 1 \
1 & -1 \
1 & 1 \
1 & -1 \
end{bmatrix}
$
I'm guessing I need to find $vec{x}$ such that $M^Tvec{x}=vec{0}$.
I have $M^T$ in rref which turns out to be
$M^T= begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}$
I am confused as to where to go from here. Are the 3rd and 4th columns free variables?
linear-algebra
linear-algebra
asked Dec 1 '15 at 20:35
hairspraygirliehairspraygirlie
307
307
$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41
add a comment |
$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41
$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41
$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$M^Tx=0 \ iff begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$
Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$
Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.
$endgroup$
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
add a comment |
$begingroup$
In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1555414%2ffind-a-basis-for-the-orthogonal-complement-of-the-column-space-of-the-following%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$M^Tx=0 \ iff begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$
Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$
Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.
$endgroup$
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
add a comment |
$begingroup$
$$M^Tx=0 \ iff begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$
Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$
Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.
$endgroup$
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
add a comment |
$begingroup$
$$M^Tx=0 \ iff begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$
Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$
Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.
$endgroup$
$$M^Tx=0 \ iff begin{bmatrix}
1 & 0 & 1 & 0 \
0 & 1 & 0 & 1 \
end{bmatrix}begin{bmatrix}x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}0 \ 0end{bmatrix} \ iff begin{cases}x_1 + x_3 = 0 \ x_2 + x_4 = 0end{cases}$$
Let $x_3=s$ and $x_4=t$ where $s,tinBbb R$, then $$begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4end{bmatrix} = begin{bmatrix}-s \ -t \ s \ tend{bmatrix} = sbegin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix} + tbegin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}$$
Thus $left{begin{bmatrix}-1 \ 0 \ 1 \ 0end{bmatrix}, begin{bmatrix}0 \ -1 \ 0 \ 1end{bmatrix}right}$ is a basis for the orthogonal complement of the column space of $M$.
answered Dec 1 '15 at 20:46
user137731
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
add a comment |
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
Well done. After writing up the problem I got the same thing. Thanks for the reassurance!!
$endgroup$
– hairspraygirlie
Dec 1 '15 at 20:48
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
$begingroup$
No problem. :-)
$endgroup$
– user137731
Dec 1 '15 at 20:50
add a comment |
$begingroup$
In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.
$endgroup$
add a comment |
$begingroup$
In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.
$endgroup$
add a comment |
$begingroup$
In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.
$endgroup$
In general, you can use the fact that the kernel of $M^*$ annihilates the image of $M$. If $M$ is relative to the standard basis, then $M^*=M^T$, so all you need to do is find the kernel (nullspace) of $M^T$, which is equivalent to solving the system of linear equations in Bye_World’s answer.
answered Dec 1 '15 at 22:27
amdamd
31.3k21052
31.3k21052
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1555414%2ffind-a-basis-for-the-orthogonal-complement-of-the-column-space-of-the-following%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Yes. You can let $x_3$ and $x_4$ be free variables.
$endgroup$
– user137731
Dec 1 '15 at 20:41