Identity with Riemann Tensor












0












$begingroup$


I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that



$d|Rm|^2=2langle Rm,nabla Rmrangle$



implies that



$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.



Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
    $endgroup$
    – Alec B-G
    Jan 28 at 19:29










  • $begingroup$
    I've added in notation, Rm is just the Riemann tensor.
    $endgroup$
    – Tom
    Jan 28 at 19:34










  • $begingroup$
    With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
    $endgroup$
    – Gabriele Cassese
    Jan 28 at 19:38












  • $begingroup$
    Yes, sorry, the Laplace-Beltrami operator.
    $endgroup$
    – Tom
    Jan 28 at 19:39
















0












$begingroup$


I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that



$d|Rm|^2=2langle Rm,nabla Rmrangle$



implies that



$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.



Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
    $endgroup$
    – Alec B-G
    Jan 28 at 19:29










  • $begingroup$
    I've added in notation, Rm is just the Riemann tensor.
    $endgroup$
    – Tom
    Jan 28 at 19:34










  • $begingroup$
    With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
    $endgroup$
    – Gabriele Cassese
    Jan 28 at 19:38












  • $begingroup$
    Yes, sorry, the Laplace-Beltrami operator.
    $endgroup$
    – Tom
    Jan 28 at 19:39














0












0








0


1



$begingroup$


I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that



$d|Rm|^2=2langle Rm,nabla Rmrangle$



implies that



$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.



Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.










share|cite|improve this question











$endgroup$




I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that



$d|Rm|^2=2langle Rm,nabla Rmrangle$



implies that



$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.



Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.







differential-geometry riemannian-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 28 at 19:49









Neal

24k24087




24k24087










asked Jan 28 at 19:22









TomTom

345111




345111












  • $begingroup$
    Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
    $endgroup$
    – Alec B-G
    Jan 28 at 19:29










  • $begingroup$
    I've added in notation, Rm is just the Riemann tensor.
    $endgroup$
    – Tom
    Jan 28 at 19:34










  • $begingroup$
    With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
    $endgroup$
    – Gabriele Cassese
    Jan 28 at 19:38












  • $begingroup$
    Yes, sorry, the Laplace-Beltrami operator.
    $endgroup$
    – Tom
    Jan 28 at 19:39


















  • $begingroup$
    Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
    $endgroup$
    – Alec B-G
    Jan 28 at 19:29










  • $begingroup$
    I've added in notation, Rm is just the Riemann tensor.
    $endgroup$
    – Tom
    Jan 28 at 19:34










  • $begingroup$
    With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
    $endgroup$
    – Gabriele Cassese
    Jan 28 at 19:38












  • $begingroup$
    Yes, sorry, the Laplace-Beltrami operator.
    $endgroup$
    – Tom
    Jan 28 at 19:39
















$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29




$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29












$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34




$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34












$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38






$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38














$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39




$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39










1 Answer
1






active

oldest

votes


















2












$begingroup$

$$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
&=nabla^mu2langle Rm,nabla_mu Rmrangle\
&=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
&=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
&=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091283%2fidentity-with-riemann-tensor%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    $$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
    &=nabla^mu2langle Rm,nabla_mu Rmrangle\
    &=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
    &=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
    &=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      $$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
      &=nabla^mu2langle Rm,nabla_mu Rmrangle\
      &=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
      &=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
      &=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        $$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
        &=nabla^mu2langle Rm,nabla_mu Rmrangle\
        &=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
        &=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
        &=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$






        share|cite|improve this answer









        $endgroup$



        $$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
        &=nabla^mu2langle Rm,nabla_mu Rmrangle\
        &=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
        &=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
        &=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 28 at 20:51









        Amitai YuvalAmitai Yuval

        15.6k11127




        15.6k11127






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091283%2fidentity-with-riemann-tensor%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]