Identity with Riemann Tensor
$begingroup$
I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that
$d|Rm|^2=2langle Rm,nabla Rmrangle$
implies that
$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.
Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.
differential-geometry riemannian-geometry
$endgroup$
add a comment |
$begingroup$
I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that
$d|Rm|^2=2langle Rm,nabla Rmrangle$
implies that
$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.
Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.
differential-geometry riemannian-geometry
$endgroup$
$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29
$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34
$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38
$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39
add a comment |
$begingroup$
I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that
$d|Rm|^2=2langle Rm,nabla Rmrangle$
implies that
$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.
Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.
differential-geometry riemannian-geometry
$endgroup$
I am currently reading some lecture notes on Riemannian geometry and it is stated that the fact that
$d|Rm|^2=2langle Rm,nabla Rmrangle$
implies that
$Delta|Rm|^2=2langle Rm,Delta Rmrangle + 2|nabla Rm|^2$.
Would someone mind clarifying why this is? To define the notation, $Delta$ is the Laplace-Beltrami operator and $Rm$ is the Riemann curvature tensor. $nabla$ is the covariant derivative.
differential-geometry riemannian-geometry
differential-geometry riemannian-geometry
edited Jan 28 at 19:49
Neal
24k24087
24k24087
asked Jan 28 at 19:22
TomTom
345111
345111
$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29
$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34
$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38
$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39
add a comment |
$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29
$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34
$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38
$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39
$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29
$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29
$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34
$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34
$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38
$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38
$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39
$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
&=nabla^mu2langle Rm,nabla_mu Rmrangle\
&=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
&=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
&=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091283%2fidentity-with-riemann-tensor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
&=nabla^mu2langle Rm,nabla_mu Rmrangle\
&=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
&=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
&=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
&=nabla^mu2langle Rm,nabla_mu Rmrangle\
&=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
&=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
&=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$
$endgroup$
add a comment |
$begingroup$
$$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
&=nabla^mu2langle Rm,nabla_mu Rmrangle\
&=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
&=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
&=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$
$endgroup$
$$begin{align}Delta|Rm|^2&=nabla^munabla_mu|Rm|^2\
&=nabla^mu2langle Rm,nabla_mu Rmrangle\
&=2g^{munu}nabla_nulangle Rm,nabla_mu Rmrangle\
&=2g^{munu}langlenabla_nu Rm,nabla_mu Rmrangle+2langle Rm,g^{numu}nabla_nunabla_mu Rmrangle\
&=2|nabla Rm|^2+2langle Rm,Delta Rmrangle.end{align}$$
answered Jan 28 at 20:51
Amitai YuvalAmitai Yuval
15.6k11127
15.6k11127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091283%2fidentity-with-riemann-tensor%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Could you define the quantities in your expression? Is $Delta=nabla^munabla_mu$? What is $Rm$?
$endgroup$
– Alec B-G
Jan 28 at 19:29
$begingroup$
I've added in notation, Rm is just the Riemann tensor.
$endgroup$
– Tom
Jan 28 at 19:34
$begingroup$
With laplacian, you mean the Laplace-Beltrami operator ($Delta T=nabla^{alpha}nabla_{alpha}T$)?
$endgroup$
– Gabriele Cassese
Jan 28 at 19:38
$begingroup$
Yes, sorry, the Laplace-Beltrami operator.
$endgroup$
– Tom
Jan 28 at 19:39