What does it mean for the cross product to be invariant under orthogonal transformation?
$begingroup$
This article claims $Ax times Ay = det(A)(xtimes y)$, but using the vectors $(3,2,1)$ and $(5,4,6)$ and the orthogonal transformation with determinant $1$:
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)$$
does not hold.
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
3 \
2 \
1
end{matrix}right)=left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)$$
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
5 \
4 \
6
end{matrix}right)=left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)$$
and
$$left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)times left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)=left(begin{matrix}
frac{13*sqrt{3}+8}{2} \
frac{8*sqrt{3}-13}{2} \
2
end{matrix}right)$$
but $(3,2,1)times (5,4,6)=(8,-13,2)$.
So, what does it mean for the cross product to be invariant under orthogonal transformation?
linear-algebra cross-product
$endgroup$
add a comment |
$begingroup$
This article claims $Ax times Ay = det(A)(xtimes y)$, but using the vectors $(3,2,1)$ and $(5,4,6)$ and the orthogonal transformation with determinant $1$:
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)$$
does not hold.
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
3 \
2 \
1
end{matrix}right)=left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)$$
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
5 \
4 \
6
end{matrix}right)=left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)$$
and
$$left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)times left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)=left(begin{matrix}
frac{13*sqrt{3}+8}{2} \
frac{8*sqrt{3}-13}{2} \
2
end{matrix}right)$$
but $(3,2,1)times (5,4,6)=(8,-13,2)$.
So, what does it mean for the cross product to be invariant under orthogonal transformation?
linear-algebra cross-product
$endgroup$
1
$begingroup$
The claim in the linked note is obviously wrong. I think it is correct if you multiply the cross-product on the right by A.
$endgroup$
– Lukas Geyer
Jan 28 at 19:53
1
$begingroup$
You say "this article" : first of all, it is not an article, it is a page page written by anybody anywhere in the Realm of nowhere... It is not because something is written that it is true...
$endgroup$
– Jean Marie
Jan 28 at 20:41
add a comment |
$begingroup$
This article claims $Ax times Ay = det(A)(xtimes y)$, but using the vectors $(3,2,1)$ and $(5,4,6)$ and the orthogonal transformation with determinant $1$:
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)$$
does not hold.
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
3 \
2 \
1
end{matrix}right)=left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)$$
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
5 \
4 \
6
end{matrix}right)=left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)$$
and
$$left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)times left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)=left(begin{matrix}
frac{13*sqrt{3}+8}{2} \
frac{8*sqrt{3}-13}{2} \
2
end{matrix}right)$$
but $(3,2,1)times (5,4,6)=(8,-13,2)$.
So, what does it mean for the cross product to be invariant under orthogonal transformation?
linear-algebra cross-product
$endgroup$
This article claims $Ax times Ay = det(A)(xtimes y)$, but using the vectors $(3,2,1)$ and $(5,4,6)$ and the orthogonal transformation with determinant $1$:
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)$$
does not hold.
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
3 \
2 \
1
end{matrix}right)=left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)$$
$$left(begin{matrix}
frac{1}{2} & frac{-sqrt{3}}{2} & 0 \
frac{sqrt{3}}{2} & frac{1}{2} & 0 \
0 & 0 & 1
end{matrix}right)left(begin{matrix}
5 \
4 \
6
end{matrix}right)=left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)$$
and
$$left(begin{matrix}
frac{-2*sqrt{3}+3}{2} \
frac{3*sqrt{3}+2}{2} \
1
end{matrix}right)times left(begin{matrix}
frac{-4*sqrt{3}+5}{2} \
frac{5*sqrt{3}+4}{2} \
6
end{matrix}right)=left(begin{matrix}
frac{13*sqrt{3}+8}{2} \
frac{8*sqrt{3}-13}{2} \
2
end{matrix}right)$$
but $(3,2,1)times (5,4,6)=(8,-13,2)$.
So, what does it mean for the cross product to be invariant under orthogonal transformation?
linear-algebra cross-product
linear-algebra cross-product
edited Jan 28 at 19:58
José Carlos Santos
171k23132240
171k23132240
asked Jan 28 at 19:45
Al JebrAl Jebr
4,37943378
4,37943378
1
$begingroup$
The claim in the linked note is obviously wrong. I think it is correct if you multiply the cross-product on the right by A.
$endgroup$
– Lukas Geyer
Jan 28 at 19:53
1
$begingroup$
You say "this article" : first of all, it is not an article, it is a page page written by anybody anywhere in the Realm of nowhere... It is not because something is written that it is true...
$endgroup$
– Jean Marie
Jan 28 at 20:41
add a comment |
1
$begingroup$
The claim in the linked note is obviously wrong. I think it is correct if you multiply the cross-product on the right by A.
$endgroup$
– Lukas Geyer
Jan 28 at 19:53
1
$begingroup$
You say "this article" : first of all, it is not an article, it is a page page written by anybody anywhere in the Realm of nowhere... It is not because something is written that it is true...
$endgroup$
– Jean Marie
Jan 28 at 20:41
1
1
$begingroup$
The claim in the linked note is obviously wrong. I think it is correct if you multiply the cross-product on the right by A.
$endgroup$
– Lukas Geyer
Jan 28 at 19:53
$begingroup$
The claim in the linked note is obviously wrong. I think it is correct if you multiply the cross-product on the right by A.
$endgroup$
– Lukas Geyer
Jan 28 at 19:53
1
1
$begingroup$
You say "this article" : first of all, it is not an article, it is a page page written by anybody anywhere in the Realm of nowhere... It is not because something is written that it is true...
$endgroup$
– Jean Marie
Jan 28 at 20:41
$begingroup$
You say "this article" : first of all, it is not an article, it is a page page written by anybody anywhere in the Realm of nowhere... It is not because something is written that it is true...
$endgroup$
– Jean Marie
Jan 28 at 20:41
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $v=(3,2,1)$ and $w=(5,4,6)$, then, indeed $vtimes w=(8,-13,2)$. And$$A.(vtimes w)=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).$$It turns out thatbegin{align}(Av)times(Aw)&=left(frac{3}{2}-sqrt{3},1+frac{3 sqrt{3}}{2},1right)timesleft(frac{5}{2}-2 sqrt{3},2+frac{5 sqrt{3}}{2},6right)\&=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).end{align}As you can see, $(Av)times(Aw)=det(A).A(vtimes w)$ in this case. Actually, it's true for every orthogonal matrix $A$.
$endgroup$
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091306%2fwhat-does-it-mean-for-the-cross-product-to-be-invariant-under-orthogonal-transfo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $v=(3,2,1)$ and $w=(5,4,6)$, then, indeed $vtimes w=(8,-13,2)$. And$$A.(vtimes w)=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).$$It turns out thatbegin{align}(Av)times(Aw)&=left(frac{3}{2}-sqrt{3},1+frac{3 sqrt{3}}{2},1right)timesleft(frac{5}{2}-2 sqrt{3},2+frac{5 sqrt{3}}{2},6right)\&=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).end{align}As you can see, $(Av)times(Aw)=det(A).A(vtimes w)$ in this case. Actually, it's true for every orthogonal matrix $A$.
$endgroup$
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
add a comment |
$begingroup$
If $v=(3,2,1)$ and $w=(5,4,6)$, then, indeed $vtimes w=(8,-13,2)$. And$$A.(vtimes w)=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).$$It turns out thatbegin{align}(Av)times(Aw)&=left(frac{3}{2}-sqrt{3},1+frac{3 sqrt{3}}{2},1right)timesleft(frac{5}{2}-2 sqrt{3},2+frac{5 sqrt{3}}{2},6right)\&=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).end{align}As you can see, $(Av)times(Aw)=det(A).A(vtimes w)$ in this case. Actually, it's true for every orthogonal matrix $A$.
$endgroup$
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
add a comment |
$begingroup$
If $v=(3,2,1)$ and $w=(5,4,6)$, then, indeed $vtimes w=(8,-13,2)$. And$$A.(vtimes w)=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).$$It turns out thatbegin{align}(Av)times(Aw)&=left(frac{3}{2}-sqrt{3},1+frac{3 sqrt{3}}{2},1right)timesleft(frac{5}{2}-2 sqrt{3},2+frac{5 sqrt{3}}{2},6right)\&=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).end{align}As you can see, $(Av)times(Aw)=det(A).A(vtimes w)$ in this case. Actually, it's true for every orthogonal matrix $A$.
$endgroup$
If $v=(3,2,1)$ and $w=(5,4,6)$, then, indeed $vtimes w=(8,-13,2)$. And$$A.(vtimes w)=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).$$It turns out thatbegin{align}(Av)times(Aw)&=left(frac{3}{2}-sqrt{3},1+frac{3 sqrt{3}}{2},1right)timesleft(frac{5}{2}-2 sqrt{3},2+frac{5 sqrt{3}}{2},6right)\&=left(4+frac{13sqrt{3}}2,4sqrt{3}-frac{13}2,2right).end{align}As you can see, $(Av)times(Aw)=det(A).A(vtimes w)$ in this case. Actually, it's true for every orthogonal matrix $A$.
answered Jan 28 at 19:55
José Carlos SantosJosé Carlos Santos
171k23132240
171k23132240
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
add a comment |
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
Any hints on how to prove this fact that $Av times Aw=det(A)A(vtimes w)$ when $A$ is orthogonal?
$endgroup$
– Al Jebr
Jan 28 at 19:58
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
$begingroup$
You will find a proof here.
$endgroup$
– José Carlos Santos
Jan 28 at 21:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091306%2fwhat-does-it-mean-for-the-cross-product-to-be-invariant-under-orthogonal-transfo%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The claim in the linked note is obviously wrong. I think it is correct if you multiply the cross-product on the right by A.
$endgroup$
– Lukas Geyer
Jan 28 at 19:53
1
$begingroup$
You say "this article" : first of all, it is not an article, it is a page page written by anybody anywhere in the Realm of nowhere... It is not because something is written that it is true...
$endgroup$
– Jean Marie
Jan 28 at 20:41