Inverse Gaussian Distribution and the Central Limit Theorem
$begingroup$
Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.
Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
$A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).
Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.
The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.
It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.
Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?
probability-theory central-limit-theorem probability-limit-theorems
$endgroup$
add a comment |
$begingroup$
Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.
Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
$A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).
Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.
The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.
It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.
Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?
probability-theory central-limit-theorem probability-limit-theorems
$endgroup$
add a comment |
$begingroup$
Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.
Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
$A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).
Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.
The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.
It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.
Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?
probability-theory central-limit-theorem probability-limit-theorems
$endgroup$
Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.
Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
$A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).
Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.
The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.
It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.
Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?
probability-theory central-limit-theorem probability-limit-theorems
probability-theory central-limit-theorem probability-limit-theorems
asked Jan 28 at 19:54
AnnaAnna
7619
7619
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You may consider the random variable
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
end{align}
where
$s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
end{align}
as $ntoinfty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091316%2finverse-gaussian-distribution-and-the-central-limit-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may consider the random variable
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
end{align}
where
$s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
end{align}
as $ntoinfty$.
$endgroup$
add a comment |
$begingroup$
You may consider the random variable
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
end{align}
where
$s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
end{align}
as $ntoinfty$.
$endgroup$
add a comment |
$begingroup$
You may consider the random variable
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
end{align}
where
$s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
end{align}
as $ntoinfty$.
$endgroup$
You may consider the random variable
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
end{align}
where
$s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
begin{align}
frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
end{align}
as $ntoinfty$.
answered Jan 31 at 15:19
user52227user52227
1,038512
1,038512
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091316%2finverse-gaussian-distribution-and-the-central-limit-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown