Inverse Gaussian Distribution and the Central Limit Theorem












0












$begingroup$


Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.



Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
$A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).



Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.



The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.



It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.



Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.



    Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
    $A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).



    Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.



    The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.



    It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.



    Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.



      Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
      $A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).



      Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.



      The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.



      It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.



      Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?










      share|cite|improve this question









      $endgroup$




      Let the random variables $Y_1,ldots,Y_n$ be independent and identically distributed (i.i.d.) (standard) Inverse Gaussian random variables with parameters $mu$ and $lambda$.



      Then, let the random variables $tilde{A}$ and $A$ be given, which are defined as follows:
      $A = sqrt n cdot tilde{A} = sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right] - thetaright)$ ($b_i in mathbb{R}$ ($i=1,ldots,n$) are constants (with $b_i neq b_j$ for any $i neq j$) and $theta$ is a parameter).



      Goal: Determine what ultimately follows if one uses the (Lindeberg-Lévy) Central Limit Theorem on $e^{b_i Y_i}$.



      The CLT informs us that $sqrt n (overline{Y} - E(Y_i)) xrightarrow{D} mathcal{N}(0,Var(Y_i))$, i.e. $sqrt n left(frac{1}{n} cdot sum_{i=1}^n [Y_i] - mu right) xrightarrow{D} mathcal{N}(0,frac{mu^3}{lambda})$.



      It seems to me that it follows that $sqrt n left(frac{1}{n} cdot sum_{i=1}^n left[e^{b_i Y_i}right]- e^{b_i mu}right) xrightarrow{D} ldots$.



      Question: How to proceed from here (i.e. how to determine the limit distribution of $sqrt n cdot tilde{A}$)?







      probability-theory central-limit-theorem probability-limit-theorems






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 19:54









      AnnaAnna

      7619




      7619






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          You may consider the random variable
          begin{align}
          frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
          end{align}

          where
          $s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
          begin{align}
          frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
          end{align}

          as $ntoinfty$.






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091316%2finverse-gaussian-distribution-and-the-central-limit-theorem%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            You may consider the random variable
            begin{align}
            frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
            end{align}

            where
            $s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
            begin{align}
            frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
            end{align}

            as $ntoinfty$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              You may consider the random variable
              begin{align}
              frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
              end{align}

              where
              $s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
              begin{align}
              frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
              end{align}

              as $ntoinfty$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                You may consider the random variable
                begin{align}
                frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
                end{align}

                where
                $s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
                begin{align}
                frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
                end{align}

                as $ntoinfty$.






                share|cite|improve this answer









                $endgroup$



                You may consider the random variable
                begin{align}
                frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu})
                end{align}

                where
                $s_n^2 = sum_{i=1}^n sigma_i^2$ and $sigma_i$ is the variance of $e^{b_iY_i}$. Then, you can check whether the Lindeberg's condition is satisfied. If it is satisfied, using the Lindeberg CLT
                begin{align}
                frac{1}{s_n} sum_{i=1}^n (e^{b_i Y_i} - e^{b_i mu}) xrightarrow{D} mathcal{N}(0,1)
                end{align}

                as $ntoinfty$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 31 at 15:19









                user52227user52227

                1,038512




                1,038512






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091316%2finverse-gaussian-distribution-and-the-central-limit-theorem%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]