How to derive closed formulas of Cantor set?












3












$begingroup$



The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.




From Wikiwand's page, The explicit formulas of Cantor sets are



$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$



I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.



Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:18












  • $begingroup$
    Thank you so much @HennoBrandsma! You are correct.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:20






  • 1




    $begingroup$
    The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:20












  • $begingroup$
    @HennoBrandsma I have fixed it :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:22










  • $begingroup$
    Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
    $endgroup$
    – J.G.
    Jan 19 at 9:35
















3












$begingroup$



The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.




From Wikiwand's page, The explicit formulas of Cantor sets are



$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$



I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.



Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:18












  • $begingroup$
    Thank you so much @HennoBrandsma! You are correct.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:20






  • 1




    $begingroup$
    The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:20












  • $begingroup$
    @HennoBrandsma I have fixed it :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:22










  • $begingroup$
    Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
    $endgroup$
    – J.G.
    Jan 19 at 9:35














3












3








3


1



$begingroup$



The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.




From Wikiwand's page, The explicit formulas of Cantor sets are



$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$



I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.



Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!










share|cite|improve this question











$endgroup$





The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.




From Wikiwand's page, The explicit formulas of Cantor sets are



$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$



I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.



Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!







cantor-set






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 19 at 9:56







Le Anh Dung

















asked Jan 19 at 9:09









Le Anh DungLe Anh Dung

1,2911621




1,2911621








  • 1




    $begingroup$
    I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:18












  • $begingroup$
    Thank you so much @HennoBrandsma! You are correct.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:20






  • 1




    $begingroup$
    The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:20












  • $begingroup$
    @HennoBrandsma I have fixed it :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:22










  • $begingroup$
    Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
    $endgroup$
    – J.G.
    Jan 19 at 9:35














  • 1




    $begingroup$
    I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:18












  • $begingroup$
    Thank you so much @HennoBrandsma! You are correct.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:20






  • 1




    $begingroup$
    The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
    $endgroup$
    – Henno Brandsma
    Jan 19 at 9:20












  • $begingroup$
    @HennoBrandsma I have fixed it :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 9:22










  • $begingroup$
    Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
    $endgroup$
    – J.G.
    Jan 19 at 9:35








1




1




$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18






$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18














$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20




$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20




1




1




$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20






$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20














$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22




$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22












$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35




$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35










2 Answers
2






active

oldest

votes


















2












$begingroup$

The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.



Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:11












  • $begingroup$
    @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 12:24










  • $begingroup$
    @LeAnhDung also see my answer here for a more accurate description.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 12:30










  • $begingroup$
    Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:33












  • $begingroup$
    I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:34



















0












$begingroup$

I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!






Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$



Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$






Let $T_n=I_0-I_n$ for all $ninBbb N$.




Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$




Proof:



Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.



By the definition of $T_{n+1}$:



$begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$




Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$




Proof:



Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.



Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.



It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.




Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$




Proof:



We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.



Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.



By Lemma 1,



$T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$



$=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$



$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$



$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$



$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



$= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2



We proceed to prove our main theorem.



$mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]



$=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



$=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



$=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.



This completes the proof.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079139%2fhow-to-derive-closed-formulas-of-cantor-set%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.



    Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:11












    • $begingroup$
      @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:24










    • $begingroup$
      @LeAnhDung also see my answer here for a more accurate description.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:30










    • $begingroup$
      Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:33












    • $begingroup$
      I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:34
















    2












    $begingroup$

    The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.



    Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:11












    • $begingroup$
      @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:24










    • $begingroup$
      @LeAnhDung also see my answer here for a more accurate description.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:30










    • $begingroup$
      Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:33












    • $begingroup$
      I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:34














    2












    2








    2





    $begingroup$

    The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.



    Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.






    share|cite|improve this answer









    $endgroup$



    The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.



    Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 19 at 9:26









    Henno BrandsmaHenno Brandsma

    111k348118




    111k348118












    • $begingroup$
      Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:11












    • $begingroup$
      @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:24










    • $begingroup$
      @LeAnhDung also see my answer here for a more accurate description.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:30










    • $begingroup$
      Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:33












    • $begingroup$
      I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:34


















    • $begingroup$
      Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:11












    • $begingroup$
      @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:24










    • $begingroup$
      @LeAnhDung also see my answer here for a more accurate description.
      $endgroup$
      – Henno Brandsma
      Jan 19 at 12:30










    • $begingroup$
      Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:33












    • $begingroup$
      I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
      $endgroup$
      – Le Anh Dung
      Jan 19 at 12:34
















    $begingroup$
    Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:11






    $begingroup$
    Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:11














    $begingroup$
    @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 12:24




    $begingroup$
    @LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 12:24












    $begingroup$
    @LeAnhDung also see my answer here for a more accurate description.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 12:30




    $begingroup$
    @LeAnhDung also see my answer here for a more accurate description.
    $endgroup$
    – Henno Brandsma
    Jan 19 at 12:30












    $begingroup$
    Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:33






    $begingroup$
    Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:33














    $begingroup$
    I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:34




    $begingroup$
    I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
    $endgroup$
    – Le Anh Dung
    Jan 19 at 12:34











    0












    $begingroup$

    I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!






    Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$



    Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$






    Let $T_n=I_0-I_n$ for all $ninBbb N$.




    Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$




    Proof:



    Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.



    By the definition of $T_{n+1}$:



    $begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$




    Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$




    Proof:



    Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.



    Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.



    It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.




    Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$




    Proof:



    We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.



    Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.



    By Lemma 1,



    $T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$



    $=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$



    $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$



    $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$



    $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



    $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



    $= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
    $=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2



    We proceed to prove our main theorem.



    $mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]



    $=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



    $=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



    $=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.



    This completes the proof.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!






      Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$



      Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$






      Let $T_n=I_0-I_n$ for all $ninBbb N$.




      Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$




      Proof:



      Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.



      By the definition of $T_{n+1}$:



      $begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$




      Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$




      Proof:



      Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.



      Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.



      It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.




      Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$




      Proof:



      We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.



      Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.



      By Lemma 1,



      $T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$



      $=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$



      $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$



      $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$



      $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



      $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



      $= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
      $=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2



      We proceed to prove our main theorem.



      $mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]



      $=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



      $=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



      $=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.



      This completes the proof.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!






        Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$



        Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$






        Let $T_n=I_0-I_n$ for all $ninBbb N$.




        Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$




        Proof:



        Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.



        By the definition of $T_{n+1}$:



        $begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$




        Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$




        Proof:



        Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.



        Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.



        It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.




        Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$




        Proof:



        We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.



        Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.



        By Lemma 1,



        $T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$



        $=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



        $= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
        $=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2



        We proceed to prove our main theorem.



        $mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]



        $=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



        $=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



        $=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.



        This completes the proof.






        share|cite|improve this answer









        $endgroup$



        I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!






        Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$



        Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$






        Let $T_n=I_0-I_n$ for all $ninBbb N$.




        Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$




        Proof:



        Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.



        By the definition of $T_{n+1}$:



        $begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$




        Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$




        Proof:



        Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.



        Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.



        It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.




        Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$




        Proof:



        We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.



        Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.



        By Lemma 1,



        $T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$



        $=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



        $=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$



        $= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
        $=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2



        We proceed to prove our main theorem.



        $mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]



        $=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



        $=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$



        $=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.



        This completes the proof.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 20 at 15:06









        Le Anh DungLe Anh Dung

        1,2911621




        1,2911621






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079139%2fhow-to-derive-closed-formulas-of-cantor-set%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            Npm cannot find a required file even through it is in the searched directory