How to derive closed formulas of Cantor set?
$begingroup$
The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
From Wikiwand's page, The explicit formulas of Cantor sets are
$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$
I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.
Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!
cantor-set
$endgroup$
|
show 8 more comments
$begingroup$
The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
From Wikiwand's page, The explicit formulas of Cantor sets are
$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$
I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.
Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!
cantor-set
$endgroup$
1
$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18
$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20
1
$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20
$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22
$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35
|
show 8 more comments
$begingroup$
The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
From Wikiwand's page, The explicit formulas of Cantor sets are
$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$
I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.
Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!
cantor-set
$endgroup$
The Cantor set $mathcal{C}$ is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty}C_n$$ where $C_0=[0,1]$ and $C_{n+1} = dfrac{C_n}{3} bigcupleft(dfrac{2}{3}+dfrac{C_n}{3}right)$.
From Wikiwand's page, The explicit formulas of Cantor sets are
$$mathcal{C} = bigcap_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right) space (1)$$ and $$mathcal{C} = [0,1] setminus bigcupleft{left(frac {3k+1}{3^n}, frac{3k+2}{3^n}right) ,middlevert, k,nin mathbb Z^+right} space (2)$$
I have tried for several days to get $(1)$ and $(2)$ from the definition of Cantor set, but to no avail.
Could you please help me derive formulas $(1)$ and $(2)$? Thank you so much!
cantor-set
cantor-set
edited Jan 19 at 9:56
Le Anh Dung
asked Jan 19 at 9:09


Le Anh DungLe Anh Dung
1,2911621
1,2911621
1
$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18
$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20
1
$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20
$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22
$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35
|
show 8 more comments
1
$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18
$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20
1
$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20
$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22
$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35
1
1
$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18
$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18
$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20
$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20
1
1
$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20
$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20
$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22
$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22
$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35
$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35
|
show 8 more comments
2 Answers
2
active
oldest
votes
$begingroup$
The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.
Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.
$endgroup$
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
|
show 3 more comments
$begingroup$
I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!
Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$
Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$
Let $T_n=I_0-I_n$ for all $ninBbb N$.
Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$
Proof:
Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.
By the definition of $T_{n+1}$:
$begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$
Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$
Proof:
Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.
Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.
It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.
Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$
Proof:
We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.
Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.
By Lemma 1,
$T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$
$=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2
We proceed to prove our main theorem.
$mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]
$=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.
This completes the proof.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079139%2fhow-to-derive-closed-formulas-of-cantor-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.
Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.
$endgroup$
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
|
show 3 more comments
$begingroup$
The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.
Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.
$endgroup$
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
|
show 3 more comments
$begingroup$
The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.
Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.
$endgroup$
The finite union in (1) is just the expression for $C_n$; you can prove its truth by induction. And $C = bigcap_n C_n$ by definition.
Then (2) follows by de Morgan: the complement of $C_n$ in $[0,1]$ is just a finite union of open intervals and the complement of $C$ is just the union of the complements of the $C_n$. You then take the complement of that to get $C$ back.
answered Jan 19 at 9:26
Henno BrandsmaHenno Brandsma
111k348118
111k348118
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
|
show 3 more comments
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
Hi @Henno. Let $T_n=bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$. As a result, $T_0=[0,frac{1}{3}]cup [frac{2}{3},1]$ and $T_1=[0,frac{1}{9}]cup [frac{2}{9},frac{3}{9}]cup [frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}] cup[frac{6}{9},frac{7}{9}]cup [frac{8}{9},1]$. As a result, $T_0=C_1$, but $T_1neq C_2$. I am unable to verify that the formulas given in Wikipedia is correct or not. Please help me check the formula!
$endgroup$
– Le Anh Dung
Jan 19 at 12:11
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung every $C_n$ is a disjoint union of $2^n$ many intervals of length $frac{1}{3^n}$, so the formulae on the wikiwand page are wrong.
$endgroup$
– Henno Brandsma
Jan 19 at 12:24
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
@LeAnhDung also see my answer here for a more accurate description.
$endgroup$
– Henno Brandsma
Jan 19 at 12:30
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
Hi @Henno, I think that formula is correct. Although $T_n=:bigcup_{k=0}^{3^n-1} left(left[frac{3k+0}{3^{n+1}},,, frac{3k+1}{3^{n+1}}right] cup left[frac{3k+2}{3^{n+1}},,,frac{3k+3}{3^{n+1}}right] right)$ is not equal to $C_n$. But the redundant intervals in $T_{n+1}$ and $T_n$ are actually disjoint. As you can see in my previous comment, $[frac{3}{9},frac{4}{9}]cup [frac{5}{9},frac{6}{9}]$ from $T_1$ are disjoint with $T_0$. From this observation, I guess $T_1cap T_0=C_2$ and $bigcap {T_0,cdots,T_n}=C_{n+1}$.
$endgroup$
– Le Anh Dung
Jan 19 at 12:33
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
$begingroup$
I am mainly concerned with the explicit formulas of Cantor set, while your answer in that link does not address that :)
$endgroup$
– Le Anh Dung
Jan 19 at 12:34
|
show 3 more comments
$begingroup$
I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!
Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$
Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$
Let $T_n=I_0-I_n$ for all $ninBbb N$.
Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$
Proof:
Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.
By the definition of $T_{n+1}$:
$begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$
Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$
Proof:
Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.
Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.
It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.
Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$
Proof:
We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.
Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.
By Lemma 1,
$T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$
$=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2
We proceed to prove our main theorem.
$mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]
$=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.
This completes the proof.
$endgroup$
add a comment |
$begingroup$
I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!
Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$
Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$
Let $T_n=I_0-I_n$ for all $ninBbb N$.
Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$
Proof:
Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.
By the definition of $T_{n+1}$:
$begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$
Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$
Proof:
Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.
Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.
It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.
Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$
Proof:
We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.
Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.
By Lemma 1,
$T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$
$=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2
We proceed to prove our main theorem.
$mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]
$=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.
This completes the proof.
$endgroup$
add a comment |
$begingroup$
I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!
Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$
Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$
Let $T_n=I_0-I_n$ for all $ninBbb N$.
Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$
Proof:
Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.
By the definition of $T_{n+1}$:
$begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$
Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$
Proof:
Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.
Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.
It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.
Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$
Proof:
We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.
Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.
By Lemma 1,
$T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$
$=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2
We proceed to prove our main theorem.
$mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]
$=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.
This completes the proof.
$endgroup$
I have figured out the proof and posted it as an answer here. It will be great and beneficial if someone helps me verify my attempt. Thank you so much!
Let $mathbf{L}(x)=dfrac{x}{3}$ and $mathbf{R}(x)=dfrac{x+2}{3}$. Let $I_0=[0,1]$ and $I_{n+1}=mathbf{L}(I_n) cup mathbf{R}(I_n)$. Cantor set is defined as follows: $$mathcal{C}:=bigcap_{n=0}^{infty} I_n$$
Theorem: $$mathcal{C} = [0,1] - bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left( frac{3k+1}{3^{n+1}} ,frac{3k+2}{3^{n+1}}right)$$
Let $T_n=I_0-I_n$ for all $ninBbb N$.
Lemma 1: $$T_{n+1}=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)$$
Proof:
Notice that $mathbf{R}(T_n)=mathbf{R}(I_0-I_n)=mathbf{R}(I_0)- mathbf{R}(I_n) subseteq mathbf{R}(I_0) subseteq I_0-mathbf{L}(I_0)$. Thus $(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)=mathbf{R}(T_n)$. Similarly, $mathbf{L}(T_n) subseteq mathbf{L}(I_0) subseteq I_0 -mathbf{R}(I_0)$ and thus $(I_0-mathbf{R}(I_0)) capmathbf{L}(T_n)=mathbf{L}(T_n)$. Moreover, $mathbf{L}(T_n)capmathbf{R}(T_n) subseteq mathbf{L}(I_0)capmathbf{R}(I_0)=emptyset$.
By the definition of $T_{n+1}$:
$begin{align}T_{n+1} &=I_0-I_{n+1}\ &=I_0-(mathbf{L}(I_n) cup mathbf{R}(I_n))\ &=(I_0-mathbf{L}(I_n)) cap (I_0 - mathbf{R}(I_n))\ &=[I_0-mathbf{L}(I_0-T_n)] cap [I_0 - mathbf{R}(I_0-T_n)]\ &=[I_0-(mathbf{L}(I_0)-mathbf{L}(T_n))] cap [I_0 - (mathbf{R}(I_0)-mathbf{R}(T_n))]\ &=[(I_0-mathbf{L}(I_0)) cup mathbf{L}(T_n)] cap [(I_0-mathbf{R}(I_0)) cup mathbf{R}(T_n)]\ &= [(I_0-mathbf{L}(I_0)) cap (I_0-mathbf{R}(I_0))] cup [(I_0-mathbf{L}(I_0)) capmathbf{R}(T_n)] cup [mathbf{L}(T_n)cap(I_0-mathbf{R}(I_0))] cup [mathbf{L}(T_n)capmathbf{R}(T_n)]\ &=[I_0 -mathbf{(L}(I_0)cupmathbf{R}(I_0))]cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=(I_0-I_1)cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &= T_1 cup mathbf{R}(T_n) cup mathbf{L}(T_n)\ &=mathbf{L}(T_n) cup T_1 cup mathbf{R}(T_n)end{align}$
Lemma 2: $$bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) = left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$$
Proof:
Let $t=m+1$. Then $RHS=left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]$.
Moreover, $bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^{3^0-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{k=0}^0 left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)=$ $left(frac{1}{3},frac{2}{3} right)$.
It follows that $RHS = left [ bigcup_{t=0}^0 bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) right] cup left[bigcup_{t=1}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right)right]=$ $bigcup_{t=0}^{n+1} bigcup_{k=0}^{3^t-1} left(frac{3k+1}{3^{t+1}}, frac{3k+2}{3^{t+1}}right) = bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right) =LHS$.
Lemma 3: $$T_{n+1}=bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$$
Proof:
We prove the assertion by induction on $n$. It is clear that it trivially holds for $n=0$. Let it hold for a positive integer $n$.
Notice that $frac{1}{3} < frac{3k+1}{3^{m+2}} < frac{3k+2}{3^{m+2}} < frac{2}{3}$ for all $3^m le k le 2.3^m-1$. It follows that $bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) subseteq left(frac{1}{3},frac{2}{3} right)$ and thus $left(frac{1}{3},frac{2}{3} right)= left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ]$.
By Lemma 1,
$T_{(n+1)+1}=T_{n+2}=mathbf{L}(T_{n+1}) cup T_1 cup mathbf{R}(T_{n+1})$
$=mathbf{L}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right) cup left(frac{1}{3},frac{2}{3} right) cup mathbf{R}left(bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)right)$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1+2.3^{m+1}}{3^{m+2}}, frac{3k+2+2.3^{m+1}}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3(k+2.3^m)+1}{3^{m+2}}, frac{3(k+2.3^m)+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left(frac{1}{3},frac{2}{3} right) cup left [bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=left[bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right] cup left [ left(frac{1}{3},frac{2}{3} right) cup left( bigcup_{m=0}^n bigcup_{k=3^{m}}^{2.3^m-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right) right)right ] cup left[ bigcup_{m=0}^n bigcup_{k=2.3^{m}}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$= left(frac{1}{3},frac{2}{3} right) cup left[bigcup_{m=0}^n bigcup_{k=0}^{3^{m+1}-1} left(frac{3k+1}{3^{m+2}}, frac{3k+2}{3^{m+2}}right)right]$
$=bigcup_{m=0}^{n+1} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$ by Lemma 2
We proceed to prove our main theorem.
$mathcal{C}:=bigcap_{n=0}^{infty} I_n=bigcap_{n=0}^{infty} (I_0-T_n)=I_0-bigcup_{n=0}^{infty} T_n=I_0-bigcup_{n=1}^{infty}T_n$ [since $T_0=emptyset$]
$=I_0-bigcup_{n=0}^{infty}T_{n+1}=I_0-bigcup_{n=0}^{infty}bigcup_{m=0}^n bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{m=0}^{infty} bigcup_{k=0}^{3^m-1} left(frac{3k+1}{3^{m+1}}, frac{3k+2}{3^{m+1}}right)$
$=I_0-bigcup_{n=0}^{infty} bigcup_{k=0}^{3^n-1} left(frac{3k+1}{3^{n+1}}, frac{3k+2}{3^{n+1}}right)$.
This completes the proof.
answered Jan 20 at 15:06


Le Anh DungLe Anh Dung
1,2911621
1,2911621
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079139%2fhow-to-derive-closed-formulas-of-cantor-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I changed the finite intersection to a finite union, as per the page. BTW It's not wikipedia's page but wikiwand...? A sort of commercial (ads (!)) rip-off it seems.
$endgroup$
– Henno Brandsma
Jan 19 at 9:18
$begingroup$
Thank you so much @HennoBrandsma! You are correct.
$endgroup$
– Le Anh Dung
Jan 19 at 9:20
1
$begingroup$
The second formula is wrong semantically: you cannot substract a set of intervals (!) from $[0,1]$. There are unions missing..
$endgroup$
– Henno Brandsma
Jan 19 at 9:20
$begingroup$
@HennoBrandsma I have fixed it :)
$endgroup$
– Le Anh Dung
Jan 19 at 9:22
$begingroup$
Since $mathcal{C}=bigcup_{nge 0}C_n$, to avoid confusion your notation in (1) should probably start the dummy variable $n$ at $0$, not at $1$.
$endgroup$
– J.G.
Jan 19 at 9:35