Approximation of an $L^1-$ function of two variables by trigonometric polynomials.
$begingroup$
We know as a theorem that the trigonometric polynomials are dense in $L^1([0,1))$
For instance for a Lebesgue integrable function we use the Fejer kernel $$F(x)=sum_{n=-N}^N(1-frac{|n|}{N+1})e^{2pi inx}$$ and we take $f*F(x)$
where $''*''$ denotes the convolution of two functions.
Is there an analogue of this theorem in two dimensions,i.e in $L^1([0,1)^2)$?
If there is,then where can i find o proof of this result?
Thank you in advance.
real-analysis fourier-analysis lebesgue-integral fourier-series approximation
$endgroup$
add a comment |
$begingroup$
We know as a theorem that the trigonometric polynomials are dense in $L^1([0,1))$
For instance for a Lebesgue integrable function we use the Fejer kernel $$F(x)=sum_{n=-N}^N(1-frac{|n|}{N+1})e^{2pi inx}$$ and we take $f*F(x)$
where $''*''$ denotes the convolution of two functions.
Is there an analogue of this theorem in two dimensions,i.e in $L^1([0,1)^2)$?
If there is,then where can i find o proof of this result?
Thank you in advance.
real-analysis fourier-analysis lebesgue-integral fourier-series approximation
$endgroup$
2
$begingroup$
Stone Weierstrass
$endgroup$
– mathworker21
Jan 19 at 13:11
1
$begingroup$
I think this would work: $$int_0^1int_0^1 f(x',y')F_N(x-x')F_M(y-y')dxdy$$.
$endgroup$
– DisintegratingByParts
Jan 19 at 23:03
add a comment |
$begingroup$
We know as a theorem that the trigonometric polynomials are dense in $L^1([0,1))$
For instance for a Lebesgue integrable function we use the Fejer kernel $$F(x)=sum_{n=-N}^N(1-frac{|n|}{N+1})e^{2pi inx}$$ and we take $f*F(x)$
where $''*''$ denotes the convolution of two functions.
Is there an analogue of this theorem in two dimensions,i.e in $L^1([0,1)^2)$?
If there is,then where can i find o proof of this result?
Thank you in advance.
real-analysis fourier-analysis lebesgue-integral fourier-series approximation
$endgroup$
We know as a theorem that the trigonometric polynomials are dense in $L^1([0,1))$
For instance for a Lebesgue integrable function we use the Fejer kernel $$F(x)=sum_{n=-N}^N(1-frac{|n|}{N+1})e^{2pi inx}$$ and we take $f*F(x)$
where $''*''$ denotes the convolution of two functions.
Is there an analogue of this theorem in two dimensions,i.e in $L^1([0,1)^2)$?
If there is,then where can i find o proof of this result?
Thank you in advance.
real-analysis fourier-analysis lebesgue-integral fourier-series approximation
real-analysis fourier-analysis lebesgue-integral fourier-series approximation
edited Jan 19 at 13:13
Marios Gretsas
asked Jan 19 at 13:09
Marios GretsasMarios Gretsas
8,48011437
8,48011437
2
$begingroup$
Stone Weierstrass
$endgroup$
– mathworker21
Jan 19 at 13:11
1
$begingroup$
I think this would work: $$int_0^1int_0^1 f(x',y')F_N(x-x')F_M(y-y')dxdy$$.
$endgroup$
– DisintegratingByParts
Jan 19 at 23:03
add a comment |
2
$begingroup$
Stone Weierstrass
$endgroup$
– mathworker21
Jan 19 at 13:11
1
$begingroup$
I think this would work: $$int_0^1int_0^1 f(x',y')F_N(x-x')F_M(y-y')dxdy$$.
$endgroup$
– DisintegratingByParts
Jan 19 at 23:03
2
2
$begingroup$
Stone Weierstrass
$endgroup$
– mathworker21
Jan 19 at 13:11
$begingroup$
Stone Weierstrass
$endgroup$
– mathworker21
Jan 19 at 13:11
1
1
$begingroup$
I think this would work: $$int_0^1int_0^1 f(x',y')F_N(x-x')F_M(y-y')dxdy$$.
$endgroup$
– DisintegratingByParts
Jan 19 at 23:03
$begingroup$
I think this would work: $$int_0^1int_0^1 f(x',y')F_N(x-x')F_M(y-y')dxdy$$.
$endgroup$
– DisintegratingByParts
Jan 19 at 23:03
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079342%2fapproximation-of-an-l1-function-of-two-variables-by-trigonometric-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079342%2fapproximation-of-an-l1-function-of-two-variables-by-trigonometric-polynomial%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Stone Weierstrass
$endgroup$
– mathworker21
Jan 19 at 13:11
1
$begingroup$
I think this would work: $$int_0^1int_0^1 f(x',y')F_N(x-x')F_M(y-y')dxdy$$.
$endgroup$
– DisintegratingByParts
Jan 19 at 23:03