Prove $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})=frac{1}{3} (6 x^2-6 pi x+pi ^2)$ when $0<x<pi$












4












$begingroup$


This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:



Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], 
1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
PlotStyle -> {Automatic, {Thick, Dashed}}]


Mathematica graphics



However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:



    Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], 
    1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
    PlotStyle -> {Automatic, {Thick, Dashed}}]


    Mathematica graphics



    However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?










    share|cite|improve this question









    $endgroup$















      4












      4








      4





      $begingroup$


      This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:



      Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], 
      1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
      PlotStyle -> {Automatic, {Thick, Dashed}}]


      Mathematica graphics



      However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?










      share|cite|improve this question









      $endgroup$




      This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:



      Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], 
      1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
      PlotStyle -> {Automatic, {Thick, Dashed}}]


      Mathematica graphics



      However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?







      special-functions polylogarithm






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 19 at 11:32









      xzczdxzczd

      192112




      192112






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
          newcommand{dd}{mathrm{d}}
          newcommand{ds}[1]{displaystyle{#1}}
          newcommand{expo}[1]{,mathrm{e}^{#1},}
          newcommand{ic}{mathrm{i}}
          newcommand{mc}[1]{mathcal{#1}}
          newcommand{mrm}[1]{mathrm{#1}}
          newcommand{pars}[1]{left(,{#1},right)}
          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
          newcommand{verts}[1]{leftvert,{#1},rightvert}$

          begin{align}
          &bbox[10px,#ffd]{left.vphantom{LARGE A}%
          mrm{Li}_{2}pars{expo{-2ic x}} +
          mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
          mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
          mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
          \[5mm] = &
          -,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
          end{align}




          which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.



          Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that




          begin{align}
          &bbox[10px,#ffd]{left.vphantom{LARGE A}%
          mrm{Li}_{2}pars{expo{-2ic x}} +
          mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
          2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
          \[5mm] = &
          bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
          end{align}






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            $$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
            =2Reoperatorname{Li}_2(e^{2i x})\
            =2operatorname{Sl}_2(2x)\
            =2(frac{pi^2}{6}+pi x+x^2)$$

            Where $operatorname{Sl}$ is the SL-type Clausen function.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              Most of this is just definitions, the only property that's used is here. Pretty simple. +1
              $endgroup$
              – Jakobian
              Jan 19 at 11:45





















            1












            $begingroup$

            Try a series expansion around $x=0$ and get
            $$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Er… how to calculate the series expansion of LHS?
              $endgroup$
              – xzczd
              Jan 19 at 13:37












            • $begingroup$
              @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
              $endgroup$
              – Claude Leibovici
              Jan 19 at 13:39










            • $begingroup$
              OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
              $endgroup$
              – xzczd
              Jan 19 at 13:49










            • $begingroup$
              @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
              $endgroup$
              – Claude Leibovici
              Jan 19 at 14:00












            • $begingroup$
              OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
              $endgroup$
              – Claude Leibovici
              Jan 19 at 14:06











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079253%2fprove-textli-2e-2-i-x-textli-2e2-i-x-frac13-6-x2-6-pi-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$

            begin{align}
            &bbox[10px,#ffd]{left.vphantom{LARGE A}%
            mrm{Li}_{2}pars{expo{-2ic x}} +
            mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
            mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
            mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
            \[5mm] = &
            -,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
            end{align}




            which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.



            Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that




            begin{align}
            &bbox[10px,#ffd]{left.vphantom{LARGE A}%
            mrm{Li}_{2}pars{expo{-2ic x}} +
            mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
            2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
            \[5mm] = &
            bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
            end{align}






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
              newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
              newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
              newcommand{dd}{mathrm{d}}
              newcommand{ds}[1]{displaystyle{#1}}
              newcommand{expo}[1]{,mathrm{e}^{#1},}
              newcommand{ic}{mathrm{i}}
              newcommand{mc}[1]{mathcal{#1}}
              newcommand{mrm}[1]{mathrm{#1}}
              newcommand{pars}[1]{left(,{#1},right)}
              newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
              newcommand{root}[2]{,sqrt[#1]{,{#2},},}
              newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
              newcommand{verts}[1]{leftvert,{#1},rightvert}$

              begin{align}
              &bbox[10px,#ffd]{left.vphantom{LARGE A}%
              mrm{Li}_{2}pars{expo{-2ic x}} +
              mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
              mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
              mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
              \[5mm] = &
              -,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
              end{align}




              which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.



              Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that




              begin{align}
              &bbox[10px,#ffd]{left.vphantom{LARGE A}%
              mrm{Li}_{2}pars{expo{-2ic x}} +
              mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
              2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
              \[5mm] = &
              bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
              end{align}






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                begin{align}
                &bbox[10px,#ffd]{left.vphantom{LARGE A}%
                mrm{Li}_{2}pars{expo{-2ic x}} +
                mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
                mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
                mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
                \[5mm] = &
                -,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
                end{align}




                which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.



                Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that




                begin{align}
                &bbox[10px,#ffd]{left.vphantom{LARGE A}%
                mrm{Li}_{2}pars{expo{-2ic x}} +
                mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
                2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
                \[5mm] = &
                bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
                end{align}






                share|cite|improve this answer









                $endgroup$



                $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                newcommand{dd}{mathrm{d}}
                newcommand{ds}[1]{displaystyle{#1}}
                newcommand{expo}[1]{,mathrm{e}^{#1},}
                newcommand{ic}{mathrm{i}}
                newcommand{mc}[1]{mathcal{#1}}
                newcommand{mrm}[1]{mathrm{#1}}
                newcommand{pars}[1]{left(,{#1},right)}
                newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                newcommand{verts}[1]{leftvert,{#1},rightvert}$

                begin{align}
                &bbox[10px,#ffd]{left.vphantom{LARGE A}%
                mrm{Li}_{2}pars{expo{-2ic x}} +
                mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
                mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
                mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
                \[5mm] = &
                -,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
                end{align}




                which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.



                Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that




                begin{align}
                &bbox[10px,#ffd]{left.vphantom{LARGE A}%
                mrm{Li}_{2}pars{expo{-2ic x}} +
                mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
                2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
                \[5mm] = &
                bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
                end{align}







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 19 at 18:24









                Felix MarinFelix Marin

                68.2k7109143




                68.2k7109143























                    4












                    $begingroup$

                    $$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
                    =2Reoperatorname{Li}_2(e^{2i x})\
                    =2operatorname{Sl}_2(2x)\
                    =2(frac{pi^2}{6}+pi x+x^2)$$

                    Where $operatorname{Sl}$ is the SL-type Clausen function.






                    share|cite|improve this answer









                    $endgroup$









                    • 1




                      $begingroup$
                      Most of this is just definitions, the only property that's used is here. Pretty simple. +1
                      $endgroup$
                      – Jakobian
                      Jan 19 at 11:45


















                    4












                    $begingroup$

                    $$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
                    =2Reoperatorname{Li}_2(e^{2i x})\
                    =2operatorname{Sl}_2(2x)\
                    =2(frac{pi^2}{6}+pi x+x^2)$$

                    Where $operatorname{Sl}$ is the SL-type Clausen function.






                    share|cite|improve this answer









                    $endgroup$









                    • 1




                      $begingroup$
                      Most of this is just definitions, the only property that's used is here. Pretty simple. +1
                      $endgroup$
                      – Jakobian
                      Jan 19 at 11:45
















                    4












                    4








                    4





                    $begingroup$

                    $$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
                    =2Reoperatorname{Li}_2(e^{2i x})\
                    =2operatorname{Sl}_2(2x)\
                    =2(frac{pi^2}{6}+pi x+x^2)$$

                    Where $operatorname{Sl}$ is the SL-type Clausen function.






                    share|cite|improve this answer









                    $endgroup$



                    $$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
                    =2Reoperatorname{Li}_2(e^{2i x})\
                    =2operatorname{Sl}_2(2x)\
                    =2(frac{pi^2}{6}+pi x+x^2)$$

                    Where $operatorname{Sl}$ is the SL-type Clausen function.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 19 at 11:38









                    Kemono ChenKemono Chen

                    3,1741844




                    3,1741844








                    • 1




                      $begingroup$
                      Most of this is just definitions, the only property that's used is here. Pretty simple. +1
                      $endgroup$
                      – Jakobian
                      Jan 19 at 11:45
















                    • 1




                      $begingroup$
                      Most of this is just definitions, the only property that's used is here. Pretty simple. +1
                      $endgroup$
                      – Jakobian
                      Jan 19 at 11:45










                    1




                    1




                    $begingroup$
                    Most of this is just definitions, the only property that's used is here. Pretty simple. +1
                    $endgroup$
                    – Jakobian
                    Jan 19 at 11:45






                    $begingroup$
                    Most of this is just definitions, the only property that's used is here. Pretty simple. +1
                    $endgroup$
                    – Jakobian
                    Jan 19 at 11:45













                    1












                    $begingroup$

                    Try a series expansion around $x=0$ and get
                    $$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Er… how to calculate the series expansion of LHS?
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:37












                    • $begingroup$
                      @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 13:39










                    • $begingroup$
                      OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:49










                    • $begingroup$
                      @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:00












                    • $begingroup$
                      OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:06
















                    1












                    $begingroup$

                    Try a series expansion around $x=0$ and get
                    $$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Er… how to calculate the series expansion of LHS?
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:37












                    • $begingroup$
                      @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 13:39










                    • $begingroup$
                      OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:49










                    • $begingroup$
                      @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:00












                    • $begingroup$
                      OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:06














                    1












                    1








                    1





                    $begingroup$

                    Try a series expansion around $x=0$ and get
                    $$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$






                    share|cite|improve this answer









                    $endgroup$



                    Try a series expansion around $x=0$ and get
                    $$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 19 at 13:23









                    Claude LeiboviciClaude Leibovici

                    123k1157134




                    123k1157134












                    • $begingroup$
                      Er… how to calculate the series expansion of LHS?
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:37












                    • $begingroup$
                      @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 13:39










                    • $begingroup$
                      OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:49










                    • $begingroup$
                      @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:00












                    • $begingroup$
                      OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:06


















                    • $begingroup$
                      Er… how to calculate the series expansion of LHS?
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:37












                    • $begingroup$
                      @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 13:39










                    • $begingroup$
                      OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
                      $endgroup$
                      – xzczd
                      Jan 19 at 13:49










                    • $begingroup$
                      @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:00












                    • $begingroup$
                      OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
                      $endgroup$
                      – Claude Leibovici
                      Jan 19 at 14:06
















                    $begingroup$
                    Er… how to calculate the series expansion of LHS?
                    $endgroup$
                    – xzczd
                    Jan 19 at 13:37






                    $begingroup$
                    Er… how to calculate the series expansion of LHS?
                    $endgroup$
                    – xzczd
                    Jan 19 at 13:37














                    $begingroup$
                    @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
                    $endgroup$
                    – Claude Leibovici
                    Jan 19 at 13:39




                    $begingroup$
                    @xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
                    $endgroup$
                    – Claude Leibovici
                    Jan 19 at 13:39












                    $begingroup$
                    OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
                    $endgroup$
                    – xzczd
                    Jan 19 at 13:49




                    $begingroup$
                    OK… Mathematica can't find the general form of the series coefficient, SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}] returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi] returns 1/3 (Pi^2 - 6 Pi x + 6 x^2), so the identity is verified in another way. Thx.
                    $endgroup$
                    – xzczd
                    Jan 19 at 13:49












                    $begingroup$
                    @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
                    $endgroup$
                    – Claude Leibovici
                    Jan 19 at 14:00






                    $begingroup$
                    @xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
                    $endgroup$
                    – Claude Leibovici
                    Jan 19 at 14:00














                    $begingroup$
                    OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
                    $endgroup$
                    – Claude Leibovici
                    Jan 19 at 14:06




                    $begingroup$
                    OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
                    $endgroup$
                    – Claude Leibovici
                    Jan 19 at 14:06


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079253%2fprove-textli-2e-2-i-x-textli-2e2-i-x-frac13-6-x2-6-pi-x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$