Prove $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})=frac{1}{3} (6 x^2-6 pi x+pi ^2)$ when $0<x<pi$
$begingroup$
This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:
Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)],
1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
PlotStyle -> {Automatic, {Thick, Dashed}}]
However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?
special-functions polylogarithm
$endgroup$
add a comment |
$begingroup$
This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:
Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)],
1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
PlotStyle -> {Automatic, {Thick, Dashed}}]
However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?
special-functions polylogarithm
$endgroup$
add a comment |
$begingroup$
This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:
Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)],
1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
PlotStyle -> {Automatic, {Thick, Dashed}}]
However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?
special-functions polylogarithm
$endgroup$
This is an identity I deduced when playing with the initial-boundary value problem of heat conduction equation asked here. It's easy to verify numerically with Mathematica:
Plot[{PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)],
1/3 (π^2 - 6 π x + 6 x^2)}, {x, -1, 4},
PlotStyle -> {Automatic, {Thick, Dashed}}]
However, Mathematica doesn't know how to simplify $text{Li}_2(e^{-2 i x})+text{Li}_2(e^{2 i x})$ to $frac{1}{3} (6 x^2-6 pi x+pi ^2)$ symbolically, so I'm wondering, how can I prove it by hand?
special-functions polylogarithm
special-functions polylogarithm
asked Jan 19 at 11:32
xzczdxzczd
192112
192112
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
\[5mm] = &
-,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
end{align}
which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.
Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
\[5mm] = &
bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
end{align}
$endgroup$
add a comment |
$begingroup$
$$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
=2Reoperatorname{Li}_2(e^{2i x})\
=2operatorname{Sl}_2(2x)\
=2(frac{pi^2}{6}+pi x+x^2)$$
Where $operatorname{Sl}$ is the SL-type Clausen function.
$endgroup$
1
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
add a comment |
$begingroup$
Try a series expansion around $x=0$ and get
$$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$
$endgroup$
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g.Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.
$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
|
show 3 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079253%2fprove-textli-2e-2-i-x-textli-2e2-i-x-frac13-6-x2-6-pi-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
\[5mm] = &
-,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
end{align}
which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.
Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
\[5mm] = &
bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
\[5mm] = &
-,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
end{align}
which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.
Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
\[5mm] = &
bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
\[5mm] = &
-,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
end{align}
which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.
Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
\[5mm] = &
bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
mrm{Li}_{2}pars{exppars{2piic,{x over pi}}} +
mrm{Li}_{2}pars{exppars{-2piic,{x over pi}}}
\[5mm] = &
-,{pars{2piic}^{2} over 2!},mathrm{B}_{2}pars{x over pi}
end{align}
which is Jonqui$grave{mrm{e}}$re Inversion Formula. $ds{mrm{B}_{n}}$ is a Bernoulli Polynomial.
Note that $ds{mrm{B}_{2}pars{z} = z^{2} - z + {1 over 6}}$ such that
begin{align}
&bbox[10px,#ffd]{left.vphantom{LARGE A}%
mrm{Li}_{2}pars{expo{-2ic x}} +
mrm{Li}_{2}pars{expo{2ic x}},rightvert_{ 0 < x < pi}} =
2pi^{2}bracks{pars{x over pi}^{2} - {x over pi} + {1 over 6}}
\[5mm] = &
bbx{2x^{2} - 2pi x + {pi^{2} over 3}}
end{align}
answered Jan 19 at 18:24
Felix MarinFelix Marin
68.2k7109143
68.2k7109143
add a comment |
add a comment |
$begingroup$
$$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
=2Reoperatorname{Li}_2(e^{2i x})\
=2operatorname{Sl}_2(2x)\
=2(frac{pi^2}{6}+pi x+x^2)$$
Where $operatorname{Sl}$ is the SL-type Clausen function.
$endgroup$
1
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
add a comment |
$begingroup$
$$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
=2Reoperatorname{Li}_2(e^{2i x})\
=2operatorname{Sl}_2(2x)\
=2(frac{pi^2}{6}+pi x+x^2)$$
Where $operatorname{Sl}$ is the SL-type Clausen function.
$endgroup$
1
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
add a comment |
$begingroup$
$$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
=2Reoperatorname{Li}_2(e^{2i x})\
=2operatorname{Sl}_2(2x)\
=2(frac{pi^2}{6}+pi x+x^2)$$
Where $operatorname{Sl}$ is the SL-type Clausen function.
$endgroup$
$$operatorname{Li}_2(e^{-2 i x})+operatorname{Li}_2(e^{2 i x})\
=2Reoperatorname{Li}_2(e^{2i x})\
=2operatorname{Sl}_2(2x)\
=2(frac{pi^2}{6}+pi x+x^2)$$
Where $operatorname{Sl}$ is the SL-type Clausen function.
answered Jan 19 at 11:38
Kemono ChenKemono Chen
3,1741844
3,1741844
1
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
add a comment |
1
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
1
1
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
$begingroup$
Most of this is just definitions, the only property that's used is here. Pretty simple. +1
$endgroup$
– Jakobian
Jan 19 at 11:45
add a comment |
$begingroup$
Try a series expansion around $x=0$ and get
$$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$
$endgroup$
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g.Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.
$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
|
show 3 more comments
$begingroup$
Try a series expansion around $x=0$ and get
$$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$
$endgroup$
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g.Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.
$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
|
show 3 more comments
$begingroup$
Try a series expansion around $x=0$ and get
$$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$
$endgroup$
Try a series expansion around $x=0$ and get
$$text{Li}_2left(e^{-2 i x}right)+text{Li}_2left(e^{2 i x}right)=frac{pi ^2}{3}-2 pi x+2 x^2+Oleft(x^{99}right)$$
answered Jan 19 at 13:23
Claude LeiboviciClaude Leibovici
123k1157134
123k1157134
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g.Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.
$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
|
show 3 more comments
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g.Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.
$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
Er… how to calculate the series expansion of LHS?
$endgroup$
– xzczd
Jan 19 at 13:37
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
@xzczd. Ask Mathematica to do it ... and let me know if it works ! Cheers
$endgroup$
– Claude Leibovici
Jan 19 at 13:39
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,
SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns 1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
OK… Mathematica can't find the general form of the series coefficient,
SeriesCoefficient[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, n}]
returns the input, but e.g. Simplify[Series[PolyLog[2, E^(-2 I x)] + PolyLog[2, E^(2 I x)], {x, 0, 10}] // Normal, 0 < x < Pi]
returns 1/3 (Pi^2 - 6 Pi x + 6 x^2)
, so the identity is verified in another way. Thx.$endgroup$
– xzczd
Jan 19 at 13:49
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
@xzczd. Coulod you try the first instruction not with $n$ but with $6$ for example ? Thanks to let me know. I suppose that you need to assume $x>0$.
$endgroup$
– Claude Leibovici
Jan 19 at 14:00
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
$begingroup$
OK ! Try Series instead of SeriesCoefficient still with $6$ and not $n$. I think that I had things like that years ago when I had Mma at university.
$endgroup$
– Claude Leibovici
Jan 19 at 14:06
|
show 3 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079253%2fprove-textli-2e-2-i-x-textli-2e2-i-x-frac13-6-x2-6-pi-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown