Prove $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$
$begingroup$
prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).
calculus floor-function
$endgroup$
|
show 10 more comments
$begingroup$
prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).
calculus floor-function
$endgroup$
1
$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29
2
$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31
3
$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32
3
$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43
1
$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45
|
show 10 more comments
$begingroup$
prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).
calculus floor-function
$endgroup$
prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).
calculus floor-function
calculus floor-function
edited Feb 4 at 14:11
Martin Sleziak
44.8k10119272
44.8k10119272
asked Nov 23 '15 at 13:28
TuanleeTuanlee
724
724
1
$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29
2
$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31
3
$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32
3
$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43
1
$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45
|
show 10 more comments
1
$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29
2
$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31
3
$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32
3
$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43
1
$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45
1
1
$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29
$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29
2
2
$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31
$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31
3
3
$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32
$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32
3
3
$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43
$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43
1
1
$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45
$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45
|
show 10 more comments
3 Answers
3
active
oldest
votes
$begingroup$
First a kooky Lemma:
For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$
[$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff
$1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff
$2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff
$1 + frac 2 x -frac 2 {x^2} > 1$ iff
$frac 2 x -frac 2 {x^2} > 0$ ]
================
So now to answer your question:
Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.
It's obvious:
$2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.
Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.
So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.
====================
Case 1:
$n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$
Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.
Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.
================
Case 2:
$n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.
Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.
Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$
$= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$
(remember the kooky lemma?)
$ > (n + frac 1 2)2 = 2n + 1$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.
$endgroup$
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
add a comment |
$begingroup$
Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
$$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
and
$$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
So
$$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
and
$$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
Now we show
$$ sqrt{x}+sqrt{x+1}<2n+1. $$
Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
$$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
Note
begin{eqnarray}
&&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
&=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
&<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
&=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
&<&frac{4n-1}{n+n^2}-1\
&=&-frac{n^2-3n+1}{n+n^2}\
&<0
end{eqnarray}
for $nge 3$.
Thus
$$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
or
$$[sqrt{x}+sqrt{x+1}=2n+1$$
Case 2: $x=(n+1)^2-1$.
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&<&2(n+1)
end{eqnarray}
and
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&>&2n+1
end{eqnarray}
and hence
$$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
On the other hand
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
and
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
and hence
$$ [sqrt{4x+2}]=2n+2 $$
In both cases,
$$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
Case 3: for $n=1,2$, it is easy to check the inequality is true.
$endgroup$
add a comment |
$begingroup$
Taking the listed approach, we get
$$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$
As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:
$$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$
Squaring yields
$$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$
and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have
$$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$
and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1542728%2fprove-sqrtx-sqrtx1-sqrt4x2-x-in-bbb-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First a kooky Lemma:
For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$
[$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff
$1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff
$2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff
$1 + frac 2 x -frac 2 {x^2} > 1$ iff
$frac 2 x -frac 2 {x^2} > 0$ ]
================
So now to answer your question:
Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.
It's obvious:
$2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.
Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.
So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.
====================
Case 1:
$n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$
Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.
Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.
================
Case 2:
$n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.
Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.
Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$
$= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$
(remember the kooky lemma?)
$ > (n + frac 1 2)2 = 2n + 1$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.
$endgroup$
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
add a comment |
$begingroup$
First a kooky Lemma:
For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$
[$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff
$1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff
$2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff
$1 + frac 2 x -frac 2 {x^2} > 1$ iff
$frac 2 x -frac 2 {x^2} > 0$ ]
================
So now to answer your question:
Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.
It's obvious:
$2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.
Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.
So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.
====================
Case 1:
$n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$
Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.
Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.
================
Case 2:
$n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.
Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.
Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$
$= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$
(remember the kooky lemma?)
$ > (n + frac 1 2)2 = 2n + 1$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.
$endgroup$
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
add a comment |
$begingroup$
First a kooky Lemma:
For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$
[$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff
$1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff
$2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff
$1 + frac 2 x -frac 2 {x^2} > 1$ iff
$frac 2 x -frac 2 {x^2} > 0$ ]
================
So now to answer your question:
Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.
It's obvious:
$2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.
Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.
So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.
====================
Case 1:
$n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$
Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.
Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.
================
Case 2:
$n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.
Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.
Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$
$= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$
(remember the kooky lemma?)
$ > (n + frac 1 2)2 = 2n + 1$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.
$endgroup$
First a kooky Lemma:
For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$
[$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff
$1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff
$2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff
$1 + frac 2 x -frac 2 {x^2} > 1$ iff
$frac 2 x -frac 2 {x^2} > 0$ ]
================
So now to answer your question:
Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.
It's obvious:
$2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.
Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.
So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.
====================
Case 1:
$n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$
Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.
Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.
================
Case 2:
$n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.
Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.
So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.
Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$
$= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$
(remember the kooky lemma?)
$ > (n + frac 1 2)2 = 2n + 1$.
So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.
answered Nov 23 '15 at 22:17
fleabloodfleablood
71.7k22686
71.7k22686
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
add a comment |
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
$begingroup$
That's better :-)
$endgroup$
– abiessu
Nov 24 '15 at 3:19
add a comment |
$begingroup$
Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
$$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
and
$$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
So
$$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
and
$$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
Now we show
$$ sqrt{x}+sqrt{x+1}<2n+1. $$
Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
$$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
Note
begin{eqnarray}
&&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
&=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
&<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
&=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
&<&frac{4n-1}{n+n^2}-1\
&=&-frac{n^2-3n+1}{n+n^2}\
&<0
end{eqnarray}
for $nge 3$.
Thus
$$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
or
$$[sqrt{x}+sqrt{x+1}=2n+1$$
Case 2: $x=(n+1)^2-1$.
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&<&2(n+1)
end{eqnarray}
and
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&>&2n+1
end{eqnarray}
and hence
$$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
On the other hand
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
and
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
and hence
$$ [sqrt{4x+2}]=2n+2 $$
In both cases,
$$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
Case 3: for $n=1,2$, it is easy to check the inequality is true.
$endgroup$
add a comment |
$begingroup$
Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
$$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
and
$$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
So
$$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
and
$$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
Now we show
$$ sqrt{x}+sqrt{x+1}<2n+1. $$
Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
$$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
Note
begin{eqnarray}
&&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
&=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
&<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
&=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
&<&frac{4n-1}{n+n^2}-1\
&=&-frac{n^2-3n+1}{n+n^2}\
&<0
end{eqnarray}
for $nge 3$.
Thus
$$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
or
$$[sqrt{x}+sqrt{x+1}=2n+1$$
Case 2: $x=(n+1)^2-1$.
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&<&2(n+1)
end{eqnarray}
and
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&>&2n+1
end{eqnarray}
and hence
$$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
On the other hand
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
and
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
and hence
$$ [sqrt{4x+2}]=2n+2 $$
In both cases,
$$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
Case 3: for $n=1,2$, it is easy to check the inequality is true.
$endgroup$
add a comment |
$begingroup$
Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
$$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
and
$$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
So
$$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
and
$$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
Now we show
$$ sqrt{x}+sqrt{x+1}<2n+1. $$
Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
$$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
Note
begin{eqnarray}
&&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
&=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
&<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
&=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
&<&frac{4n-1}{n+n^2}-1\
&=&-frac{n^2-3n+1}{n+n^2}\
&<0
end{eqnarray}
for $nge 3$.
Thus
$$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
or
$$[sqrt{x}+sqrt{x+1}=2n+1$$
Case 2: $x=(n+1)^2-1$.
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&<&2(n+1)
end{eqnarray}
and
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&>&2n+1
end{eqnarray}
and hence
$$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
On the other hand
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
and
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
and hence
$$ [sqrt{4x+2}]=2n+2 $$
In both cases,
$$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
Case 3: for $n=1,2$, it is easy to check the inequality is true.
$endgroup$
Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
$$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
and
$$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
So
$$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
and
$$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
Now we show
$$ sqrt{x}+sqrt{x+1}<2n+1. $$
Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
$$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
Note
begin{eqnarray}
&&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
&=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
&<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
&=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
&<&frac{4n-1}{n+n^2}-1\
&=&-frac{n^2-3n+1}{n+n^2}\
&<0
end{eqnarray}
for $nge 3$.
Thus
$$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
or
$$[sqrt{x}+sqrt{x+1}=2n+1$$
Case 2: $x=(n+1)^2-1$.
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&<&2(n+1)
end{eqnarray}
and
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&>&2n+1
end{eqnarray}
and hence
$$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
On the other hand
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
and
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
and hence
$$ [sqrt{4x+2}]=2n+2 $$
In both cases,
$$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
Case 3: for $n=1,2$, it is easy to check the inequality is true.
answered Nov 23 '15 at 16:45
xpaulxpaul
23k24455
23k24455
add a comment |
add a comment |
$begingroup$
Taking the listed approach, we get
$$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$
As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:
$$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$
Squaring yields
$$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$
and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have
$$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$
and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.
$endgroup$
add a comment |
$begingroup$
Taking the listed approach, we get
$$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$
As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:
$$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$
Squaring yields
$$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$
and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have
$$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$
and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.
$endgroup$
add a comment |
$begingroup$
Taking the listed approach, we get
$$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$
As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:
$$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$
Squaring yields
$$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$
and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have
$$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$
and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.
$endgroup$
Taking the listed approach, we get
$$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$
As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:
$$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$
Squaring yields
$$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$
and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have
$$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$
and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.
edited Nov 23 '15 at 19:43
answered Nov 23 '15 at 16:59
abiessuabiessu
6,68721541
6,68721541
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1542728%2fprove-sqrtx-sqrtx1-sqrt4x2-x-in-bbb-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29
2
$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31
3
$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32
3
$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43
1
$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45