Prove $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$












5












$begingroup$


prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    is there any significance of the square brackets?
    $endgroup$
    – Chinny84
    Nov 23 '15 at 13:29






  • 2




    $begingroup$
    @Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:31






  • 3




    $begingroup$
    I assume that what you actually tried was $x=n^2+k$...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:32






  • 3




    $begingroup$
    The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
    $endgroup$
    – gammatester
    Nov 23 '15 at 13:43








  • 1




    $begingroup$
    if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
    $endgroup$
    – A Simmons
    Nov 23 '15 at 13:45


















5












$begingroup$


prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    is there any significance of the square brackets?
    $endgroup$
    – Chinny84
    Nov 23 '15 at 13:29






  • 2




    $begingroup$
    @Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:31






  • 3




    $begingroup$
    I assume that what you actually tried was $x=n^2+k$...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:32






  • 3




    $begingroup$
    The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
    $endgroup$
    – gammatester
    Nov 23 '15 at 13:43








  • 1




    $begingroup$
    if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
    $endgroup$
    – A Simmons
    Nov 23 '15 at 13:45
















5












5








5





$begingroup$


prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).










share|cite|improve this question











$endgroup$




prove that $[sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}], x in Bbb N$. Could someone help me to solve. I try many ways but I can't solve it ( I tried : Let $x=n^2 +k$ and don't know what to do afterwards).







calculus floor-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 4 at 14:11









Martin Sleziak

44.8k10119272




44.8k10119272










asked Nov 23 '15 at 13:28









TuanleeTuanlee

724




724








  • 1




    $begingroup$
    is there any significance of the square brackets?
    $endgroup$
    – Chinny84
    Nov 23 '15 at 13:29






  • 2




    $begingroup$
    @Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:31






  • 3




    $begingroup$
    I assume that what you actually tried was $x=n^2+k$...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:32






  • 3




    $begingroup$
    The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
    $endgroup$
    – gammatester
    Nov 23 '15 at 13:43








  • 1




    $begingroup$
    if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
    $endgroup$
    – A Simmons
    Nov 23 '15 at 13:45
















  • 1




    $begingroup$
    is there any significance of the square brackets?
    $endgroup$
    – Chinny84
    Nov 23 '15 at 13:29






  • 2




    $begingroup$
    @Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:31






  • 3




    $begingroup$
    I assume that what you actually tried was $x=n^2+k$...
    $endgroup$
    – abiessu
    Nov 23 '15 at 13:32






  • 3




    $begingroup$
    The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
    $endgroup$
    – gammatester
    Nov 23 '15 at 13:43








  • 1




    $begingroup$
    if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
    $endgroup$
    – A Simmons
    Nov 23 '15 at 13:45










1




1




$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29




$begingroup$
is there any significance of the square brackets?
$endgroup$
– Chinny84
Nov 23 '15 at 13:29




2




2




$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31




$begingroup$
@Chinny84: they usually signify "greatest integer less than contained value" or some similar wording...
$endgroup$
– abiessu
Nov 23 '15 at 13:31




3




3




$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32




$begingroup$
I assume that what you actually tried was $x=n^2+k$...
$endgroup$
– abiessu
Nov 23 '15 at 13:32




3




3




$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43






$begingroup$
The equation is not correct for general positive $x in mathbb{R}$. Try $x=frac{1}{2}$
$endgroup$
– gammatester
Nov 23 '15 at 13:43






1




1




$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45






$begingroup$
if it's the floor function, then it's not true. Check $1/2leq x< 9/16$, for example. Similarly, the ceiling function also fails.
$endgroup$
– A Simmons
Nov 23 '15 at 13:45












3 Answers
3






active

oldest

votes


















3












$begingroup$

First a kooky Lemma:



For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$



[$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff



$1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff



$2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff



$1 + frac 2 x -frac 2 {x^2} > 1$ iff



$frac 2 x -frac 2 {x^2} > 0$ ]



================



So now to answer your question:



Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.



It's obvious:



$2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.



So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.



Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.



So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.



====================



Case 1:



$n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$



Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$



So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.



Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.



So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.



================



Case 2:



$n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.



Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.



So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.



Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$



$= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$



(remember the kooky lemma?)



$ > (n + frac 1 2)2 = 2n + 1$.



So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    That's better :-)
    $endgroup$
    – abiessu
    Nov 24 '15 at 3:19



















1












$begingroup$

Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
$$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
and
$$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
So
$$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
and
$$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
Now we show
$$ sqrt{x}+sqrt{x+1}<2n+1. $$
Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
$$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
Note
begin{eqnarray}
&&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
&=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
&<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
&=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
&<&frac{4n-1}{n+n^2}-1\
&=&-frac{n^2-3n+1}{n+n^2}\
&<0
end{eqnarray}
for $nge 3$.
Thus
$$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
or
$$[sqrt{x}+sqrt{x+1}=2n+1$$
Case 2: $x=(n+1)^2-1$.
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&<&2(n+1)
end{eqnarray}
and
begin{eqnarray}
&&sqrt{x}+sqrt{x+1}\
&=&sqrt{(n+1)^2-1}+n+1\
&>&2n+1
end{eqnarray}
and hence
$$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
On the other hand
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
and
$$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
and hence
$$ [sqrt{4x+2}]=2n+2 $$
In both cases,
$$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
Case 3: for $n=1,2$, it is easy to check the inequality is true.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Taking the listed approach, we get



    $$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$



    As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:



    $$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$



    Squaring yields



    $$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
    left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$



    and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have



    $$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
    left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$



    and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.






    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1542728%2fprove-sqrtx-sqrtx1-sqrt4x2-x-in-bbb-n%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      First a kooky Lemma:



      For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$



      [$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff



      $1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff



      $2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff



      $1 + frac 2 x -frac 2 {x^2} > 1$ iff



      $frac 2 x -frac 2 {x^2} > 0$ ]



      ================



      So now to answer your question:



      Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.



      It's obvious:



      $2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.



      Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.



      So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.



      ====================



      Case 1:



      $n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$



      Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.



      Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.



      ================



      Case 2:



      $n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.



      Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.



      Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$



      $= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$



      (remember the kooky lemma?)



      $ > (n + frac 1 2)2 = 2n + 1$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        That's better :-)
        $endgroup$
        – abiessu
        Nov 24 '15 at 3:19
















      3












      $begingroup$

      First a kooky Lemma:



      For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$



      [$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff



      $1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff



      $2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff



      $1 + frac 2 x -frac 2 {x^2} > 1$ iff



      $frac 2 x -frac 2 {x^2} > 0$ ]



      ================



      So now to answer your question:



      Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.



      It's obvious:



      $2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.



      Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.



      So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.



      ====================



      Case 1:



      $n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$



      Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.



      Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.



      ================



      Case 2:



      $n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.



      Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.



      Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$



      $= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$



      (remember the kooky lemma?)



      $ > (n + frac 1 2)2 = 2n + 1$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        That's better :-)
        $endgroup$
        – abiessu
        Nov 24 '15 at 3:19














      3












      3








      3





      $begingroup$

      First a kooky Lemma:



      For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$



      [$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff



      $1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff



      $2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff



      $1 + frac 2 x -frac 2 {x^2} > 1$ iff



      $frac 2 x -frac 2 {x^2} > 0$ ]



      ================



      So now to answer your question:



      Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.



      It's obvious:



      $2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.



      Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.



      So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.



      ====================



      Case 1:



      $n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$



      Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.



      Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.



      ================



      Case 2:



      $n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.



      Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.



      Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$



      $= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$



      (remember the kooky lemma?)



      $ > (n + frac 1 2)2 = 2n + 1$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.






      share|cite|improve this answer









      $endgroup$



      First a kooky Lemma:



      For $x > 1$ then $sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$



      [$sqrt{1 - frac 1 x} + sqrt{1 + frac 3 x} > 2$ iff



      $1 - frac 1 x + 1 + frac 3 x + 2sqrt{(1 - frac 1 x)(1 + frac 3 x)} > 4$ iff



      $2 + frac 2 x + 2sqrt{(1 + frac 2 x -frac 2 {x^2}} > 4$ iff



      $1 + frac 2 x -frac 2 {x^2} > 1$ iff



      $frac 2 x -frac 2 {x^2} > 0$ ]



      ================



      So now to answer your question:



      Let $n^2 le x < (n+1)^2$ or in other words $n^2 le x le n^2 + 2n$.



      It's obvious:



      $2n < sqrt x + sqrt {x + 1} < (n + 1) + (n + 1) = 2n + 2$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = {2n, 2n + 1}$.



      Likewise $2n = sqrt{4n} < sqrt{4x + 2} le sqrt{4n^2 + 8n + 2} < sqrt{4^2 + 8 + 4} = 2(n + 1) = 2n + 2$.



      So $lfloor sqrt {4x + 2} rfloor = {2n, 2n + 1}$.



      ====================



      Case 1:



      $n^2 le x < x + 1 le n^2 + n < n^2 + n + frac 1 4 = (n + frac 1 2)^2$



      Then $ sqrt x + sqrt {x + 1} < n + frac 1 2 + n + frac 1 2 < 2n + 1$



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n$.



      Likewise $ sqrt{4x + 2} le sqrt{4n^2 + 4(n -1) + 2} < sqrt{4n^2 + 4n + 1} = 2(n + frac 1 2) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n = lfloor sqrt x + sqrt {x + 1} rfloor$.



      ================



      Case 2:



      $n^2 + 2n + 1 ge x + 1 > x ge n^2 + n$.



      Then $sqrt{4x + 2} ge sqrt{4n^2 + 4n + 2} = 2(n + frac 12) = 2n + 1$.



      So $lfloor sqrt {4x + 2} rfloor = 2n + 1$.



      Now $sqrt x + sqrt {x + 1} ge sqrt{n^2 + n} + sqrt{n^2 + n + 1} = sqrt{n^2 + n + frac 1 4 - frac 1 4} + sqrt{n^2 + n + frac 1 4 + frac 3 4}$



      $= (n + frac 1 2)[sqrt{1 - frac 1 {4(n + frac 1 2)^2}} + sqrt{1 + frac 3 {4(n + frac 1 2)^2}}]$



      (remember the kooky lemma?)



      $ > (n + frac 1 2)2 = 2n + 1$.



      So $lfloor sqrt x + sqrt {x + 1} rfloor = 2n + 1 = lfloor sqrt{4x +2} rfloor$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Nov 23 '15 at 22:17









      fleabloodfleablood

      71.7k22686




      71.7k22686












      • $begingroup$
        That's better :-)
        $endgroup$
        – abiessu
        Nov 24 '15 at 3:19


















      • $begingroup$
        That's better :-)
        $endgroup$
        – abiessu
        Nov 24 '15 at 3:19
















      $begingroup$
      That's better :-)
      $endgroup$
      – abiessu
      Nov 24 '15 at 3:19




      $begingroup$
      That's better :-)
      $endgroup$
      – abiessu
      Nov 24 '15 at 3:19











      1












      $begingroup$

      Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
      $$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
      and
      $$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
      So
      $$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
      and
      $$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
      Now we show
      $$ sqrt{x}+sqrt{x+1}<2n+1. $$
      Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
      $$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
      Note
      begin{eqnarray}
      &&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
      &=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
      &<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
      &=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
      &<&frac{4n-1}{n+n^2}-1\
      &=&-frac{n^2-3n+1}{n+n^2}\
      &<0
      end{eqnarray}
      for $nge 3$.
      Thus
      $$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
      or
      $$[sqrt{x}+sqrt{x+1}=2n+1$$
      Case 2: $x=(n+1)^2-1$.
      begin{eqnarray}
      &&sqrt{x}+sqrt{x+1}\
      &=&sqrt{(n+1)^2-1}+n+1\
      &<&2(n+1)
      end{eqnarray}
      and
      begin{eqnarray}
      &&sqrt{x}+sqrt{x+1}\
      &=&sqrt{(n+1)^2-1}+n+1\
      &>&2n+1
      end{eqnarray}
      and hence
      $$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
      On the other hand
      $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
      and
      $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
      and hence
      $$ [sqrt{4x+2}]=2n+2 $$
      In both cases,
      $$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
      Case 3: for $n=1,2$, it is easy to check the inequality is true.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
        $$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
        and
        $$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
        So
        $$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
        and
        $$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
        Now we show
        $$ sqrt{x}+sqrt{x+1}<2n+1. $$
        Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
        $$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
        Note
        begin{eqnarray}
        &&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
        &=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
        &<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
        &=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
        &<&frac{4n-1}{n+n^2}-1\
        &=&-frac{n^2-3n+1}{n+n^2}\
        &<0
        end{eqnarray}
        for $nge 3$.
        Thus
        $$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
        or
        $$[sqrt{x}+sqrt{x+1}=2n+1$$
        Case 2: $x=(n+1)^2-1$.
        begin{eqnarray}
        &&sqrt{x}+sqrt{x+1}\
        &=&sqrt{(n+1)^2-1}+n+1\
        &<&2(n+1)
        end{eqnarray}
        and
        begin{eqnarray}
        &&sqrt{x}+sqrt{x+1}\
        &=&sqrt{(n+1)^2-1}+n+1\
        &>&2n+1
        end{eqnarray}
        and hence
        $$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
        On the other hand
        $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
        and
        $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
        and hence
        $$ [sqrt{4x+2}]=2n+2 $$
        In both cases,
        $$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
        Case 3: for $n=1,2$, it is easy to check the inequality is true.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
          $$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
          and
          $$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
          So
          $$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
          and
          $$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
          Now we show
          $$ sqrt{x}+sqrt{x+1}<2n+1. $$
          Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
          $$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
          Note
          begin{eqnarray}
          &&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
          &=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
          &<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
          &=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
          &<&frac{4n-1}{n+n^2}-1\
          &=&-frac{n^2-3n+1}{n+n^2}\
          &<0
          end{eqnarray}
          for $nge 3$.
          Thus
          $$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
          or
          $$[sqrt{x}+sqrt{x+1}=2n+1$$
          Case 2: $x=(n+1)^2-1$.
          begin{eqnarray}
          &&sqrt{x}+sqrt{x+1}\
          &=&sqrt{(n+1)^2-1}+n+1\
          &<&2(n+1)
          end{eqnarray}
          and
          begin{eqnarray}
          &&sqrt{x}+sqrt{x+1}\
          &=&sqrt{(n+1)^2-1}+n+1\
          &>&2n+1
          end{eqnarray}
          and hence
          $$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
          On the other hand
          $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
          and
          $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
          and hence
          $$ [sqrt{4x+2}]=2n+2 $$
          In both cases,
          $$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
          Case 3: for $n=1,2$, it is easy to check the inequality is true.






          share|cite|improve this answer









          $endgroup$



          Case 1: $n^2le xle(n+1)^2-2$ (for $nge 3$), then
          $$ nle sqrt{x}lesqrt{(n+1)^2-2}<n+1, n<sqrt{n^2+1}le sqrt{x+1}<sqrt{(n+1)^2-1}=n+1$$
          and
          $$ 2n<sqrt{4n^2+2}le sqrt{4x+2}<sqrt{4(n+1)^2-2}<2n+1$$
          So
          $$ 2n<sqrt{x}+sqrt{x+1}<2n+2, sqrt{4x+2}=2n $$
          and
          $$ 2n+1le[sqrt{x}+sqrt{x+1}]le2n+2, [sqrt{4x+2}]=2n+1. $$
          Now we show
          $$ sqrt{x}+sqrt{x+1}<2n+1. $$
          Note $sqrt{x}+sqrt{x+1}$ is increasing and hence
          $$sqrt{x}+sqrt{x+1}lesqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}.$$
          Note
          begin{eqnarray}
          &&sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}-2n-1\
          &=&frac{(n+1)^2-2-n^2}{sqrt{(n+1)^2-2}+n^2}+frac{(n+1)^2-1-n^2}{sqrt{(n+1)^2-1}+n^2}-1\
          &<&frac{4n-1}{sqrt{(n+1)^2-2}+n^2}-1\
          &=&frac{4n-1}{sqrt{n^2+2n-1}+n^2}-1\
          &<&frac{4n-1}{n+n^2}-1\
          &=&-frac{n^2-3n+1}{n+n^2}\
          &<0
          end{eqnarray}
          for $nge 3$.
          Thus
          $$2n<sqrt{(n+1)^2-2}+sqrt{(n+1)^2-1}<2n+1$$
          or
          $$[sqrt{x}+sqrt{x+1}=2n+1$$
          Case 2: $x=(n+1)^2-1$.
          begin{eqnarray}
          &&sqrt{x}+sqrt{x+1}\
          &=&sqrt{(n+1)^2-1}+n+1\
          &<&2(n+1)
          end{eqnarray}
          and
          begin{eqnarray}
          &&sqrt{x}+sqrt{x+1}\
          &=&sqrt{(n+1)^2-1}+n+1\
          &>&2n+1
          end{eqnarray}
          and hence
          $$ [sqrt{x}+sqrt{x+1}]=2(n+1). $$
          On the other hand
          $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}<2(n+1) $$
          and
          $$ sqrt{4x+2}=sqrt{4(n+1)^2-2}>2n+1 $$
          and hence
          $$ [sqrt{4x+2}]=2n+2 $$
          In both cases,
          $$ [sqrt{x}+sqrt{x+1}]=[sqrt{4x+2}]. $$
          Case 3: for $n=1,2$, it is easy to check the inequality is true.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 23 '15 at 16:45









          xpaulxpaul

          23k24455




          23k24455























              1












              $begingroup$

              Taking the listed approach, we get



              $$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$



              As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:



              $$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$



              Squaring yields



              $$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
              left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$



              and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have



              $$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
              left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$



              and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Taking the listed approach, we get



                $$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$



                As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:



                $$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$



                Squaring yields



                $$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
                left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$



                and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have



                $$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
                left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$



                and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Taking the listed approach, we get



                  $$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$



                  As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:



                  $$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$



                  Squaring yields



                  $$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
                  left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$



                  and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have



                  $$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
                  left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$



                  and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.






                  share|cite|improve this answer











                  $endgroup$



                  Taking the listed approach, we get



                  $$[sqrt{n^2+k}+sqrt{n^2+k+1}]=[sqrt{4n^2+4k +2}]$$



                  As $k$ relates to $n$, we have a floor-function boundary for the RHS when $kin{-1,0}$ and also at $kin{n-1,n}$, so these values need to be checked on the LHS to verify that these are consecutive boundaries there as well. For $kin{-1,0}$, the LHS shows the same behavior as the RHS, so we only need to show that the LHS also has a boundary at $kin{n-1,n}$ by comparing with $2n+1$ from the RHS:



                  $$left[sqrt{n^2+n-1}+sqrt{n^2+n}right], R, 2n+1 \ text{ vs. }\ left[sqrt{n^2+n}+sqrt{n^2+n+1}right], R, 2n+1$$



                  Squaring yields



                  $$left[2n^2+2n-1+2sqrt{(n^2+n)(n^2+n-1)}right], R, 4n^2+4n+1\
                  left[2sqrt{(n^2+n)(n^2+n-1)}right], R, 2n^2+2n+2$$



                  and it should be clear that $[sqrt{n^2+n-1}+sqrt{n^2+n}]lt 2n+1$. Next we have



                  $$left[2n^2+2n+1+2sqrt{(n^2+n)(n^2+n+1)}right], R, 4n^2+4n+1\
                  left[2sqrt{(n^2+n)(n^2+n+1)}right], R, 2n^2+2n$$



                  and it should also be clear that $[sqrt{n^2+n}+sqrt{n^2+n+1}]ge 2n+1$, completing the proof.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 23 '15 at 19:43

























                  answered Nov 23 '15 at 16:59









                  abiessuabiessu

                  6,68721541




                  6,68721541






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1542728%2fprove-sqrtx-sqrtx1-sqrt4x2-x-in-bbb-n%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                      Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                      A Topological Invariant for $pi_3(U(n))$