How to evaluate $int_{0}^{2pi}frac{1}{1+sin^{2}(theta)}dtheta$
I'm pretty sure the idea is to interpret this integral as a contour integral over a closed path in the complex plane.
$$I = int_{0}^{2pi}frac{1}{1+sin^{2}(theta)}dtheta$$
We take $C = {z in mathbb{C} : |z| = 1}$, which is positively oriented.
$$z = e^{itheta}$$
$$frac{dz}{dtheta} = ie^{itheta} = iz rightarrow dtheta = frac{dz}{iz} $$
$$sin(theta) = frac{e^{itheta}-e^{-itheta}}{2i} = frac{z-z^{-1}}{2i} $$
$$sin^2(theta) = frac{z^2 - 2zz^{-1} + z^{-2}}{(2i)^2} = frac{z^2 - 2 + z^{-2}}{-4} $$
After some manipulation:
$$I = frac{4}{i}oint_{C}frac{z}{-z^4+6z^2-1}dz$$
After that one should obtain the roots of the polynomial in the denominator and solve the integral either by residues or using Cauchy's formula. However, I'm not sure how to find the roots. This was in the context of an exam, so I assume something must be wrong if the roots are too difficult to find, or if they are not "nice" numbers.
Is there a more clever way of going about this? I tried calculating the residue at infinity, but $frac{1}{z^{2}}f(frac{1}{z})$ yields the exact same function and it doesn't get any easier.
Thanks.
integration complex-analysis definite-integrals
add a comment |
I'm pretty sure the idea is to interpret this integral as a contour integral over a closed path in the complex plane.
$$I = int_{0}^{2pi}frac{1}{1+sin^{2}(theta)}dtheta$$
We take $C = {z in mathbb{C} : |z| = 1}$, which is positively oriented.
$$z = e^{itheta}$$
$$frac{dz}{dtheta} = ie^{itheta} = iz rightarrow dtheta = frac{dz}{iz} $$
$$sin(theta) = frac{e^{itheta}-e^{-itheta}}{2i} = frac{z-z^{-1}}{2i} $$
$$sin^2(theta) = frac{z^2 - 2zz^{-1} + z^{-2}}{(2i)^2} = frac{z^2 - 2 + z^{-2}}{-4} $$
After some manipulation:
$$I = frac{4}{i}oint_{C}frac{z}{-z^4+6z^2-1}dz$$
After that one should obtain the roots of the polynomial in the denominator and solve the integral either by residues or using Cauchy's formula. However, I'm not sure how to find the roots. This was in the context of an exam, so I assume something must be wrong if the roots are too difficult to find, or if they are not "nice" numbers.
Is there a more clever way of going about this? I tried calculating the residue at infinity, but $frac{1}{z^{2}}f(frac{1}{z})$ yields the exact same function and it doesn't get any easier.
Thanks.
integration complex-analysis definite-integrals
1
$z^4 = (z^2)^2$ so you can use the quadratic formula to get the roots.
– Winther
Nov 21 '18 at 0:19
1
Note that $z^4 - 6z^2 + 1 = (z^2)^2 - 6(z^2) + 1$ can be factored using the quadratic formula. Alternatively, $u = z^2$ works as a $u$-substitution.
– Omnomnomnom
Nov 21 '18 at 0:20
1
You could write $I = int_0^{2pi} frac{1}{1 + frac{1}{2} (1 - cos(2theta))} dtheta = int_0^{2pi} frac{2}{3 - cos(2theta)}dtheta = int_0^{4pi} frac{1}{3 - cos alpha}dalpha = 2 int_0^{2pi} frac{1}{3-cos alpha}dalpha$ and then evaluate that by contour integration.
– Daniel Schepler
Nov 21 '18 at 1:58
add a comment |
I'm pretty sure the idea is to interpret this integral as a contour integral over a closed path in the complex plane.
$$I = int_{0}^{2pi}frac{1}{1+sin^{2}(theta)}dtheta$$
We take $C = {z in mathbb{C} : |z| = 1}$, which is positively oriented.
$$z = e^{itheta}$$
$$frac{dz}{dtheta} = ie^{itheta} = iz rightarrow dtheta = frac{dz}{iz} $$
$$sin(theta) = frac{e^{itheta}-e^{-itheta}}{2i} = frac{z-z^{-1}}{2i} $$
$$sin^2(theta) = frac{z^2 - 2zz^{-1} + z^{-2}}{(2i)^2} = frac{z^2 - 2 + z^{-2}}{-4} $$
After some manipulation:
$$I = frac{4}{i}oint_{C}frac{z}{-z^4+6z^2-1}dz$$
After that one should obtain the roots of the polynomial in the denominator and solve the integral either by residues or using Cauchy's formula. However, I'm not sure how to find the roots. This was in the context of an exam, so I assume something must be wrong if the roots are too difficult to find, or if they are not "nice" numbers.
Is there a more clever way of going about this? I tried calculating the residue at infinity, but $frac{1}{z^{2}}f(frac{1}{z})$ yields the exact same function and it doesn't get any easier.
Thanks.
integration complex-analysis definite-integrals
I'm pretty sure the idea is to interpret this integral as a contour integral over a closed path in the complex plane.
$$I = int_{0}^{2pi}frac{1}{1+sin^{2}(theta)}dtheta$$
We take $C = {z in mathbb{C} : |z| = 1}$, which is positively oriented.
$$z = e^{itheta}$$
$$frac{dz}{dtheta} = ie^{itheta} = iz rightarrow dtheta = frac{dz}{iz} $$
$$sin(theta) = frac{e^{itheta}-e^{-itheta}}{2i} = frac{z-z^{-1}}{2i} $$
$$sin^2(theta) = frac{z^2 - 2zz^{-1} + z^{-2}}{(2i)^2} = frac{z^2 - 2 + z^{-2}}{-4} $$
After some manipulation:
$$I = frac{4}{i}oint_{C}frac{z}{-z^4+6z^2-1}dz$$
After that one should obtain the roots of the polynomial in the denominator and solve the integral either by residues or using Cauchy's formula. However, I'm not sure how to find the roots. This was in the context of an exam, so I assume something must be wrong if the roots are too difficult to find, or if they are not "nice" numbers.
Is there a more clever way of going about this? I tried calculating the residue at infinity, but $frac{1}{z^{2}}f(frac{1}{z})$ yields the exact same function and it doesn't get any easier.
Thanks.
integration complex-analysis definite-integrals
integration complex-analysis definite-integrals
edited Nov 21 '18 at 0:26
Bernard
118k639112
118k639112
asked Nov 21 '18 at 0:14


Juanma Eloy
5511516
5511516
1
$z^4 = (z^2)^2$ so you can use the quadratic formula to get the roots.
– Winther
Nov 21 '18 at 0:19
1
Note that $z^4 - 6z^2 + 1 = (z^2)^2 - 6(z^2) + 1$ can be factored using the quadratic formula. Alternatively, $u = z^2$ works as a $u$-substitution.
– Omnomnomnom
Nov 21 '18 at 0:20
1
You could write $I = int_0^{2pi} frac{1}{1 + frac{1}{2} (1 - cos(2theta))} dtheta = int_0^{2pi} frac{2}{3 - cos(2theta)}dtheta = int_0^{4pi} frac{1}{3 - cos alpha}dalpha = 2 int_0^{2pi} frac{1}{3-cos alpha}dalpha$ and then evaluate that by contour integration.
– Daniel Schepler
Nov 21 '18 at 1:58
add a comment |
1
$z^4 = (z^2)^2$ so you can use the quadratic formula to get the roots.
– Winther
Nov 21 '18 at 0:19
1
Note that $z^4 - 6z^2 + 1 = (z^2)^2 - 6(z^2) + 1$ can be factored using the quadratic formula. Alternatively, $u = z^2$ works as a $u$-substitution.
– Omnomnomnom
Nov 21 '18 at 0:20
1
You could write $I = int_0^{2pi} frac{1}{1 + frac{1}{2} (1 - cos(2theta))} dtheta = int_0^{2pi} frac{2}{3 - cos(2theta)}dtheta = int_0^{4pi} frac{1}{3 - cos alpha}dalpha = 2 int_0^{2pi} frac{1}{3-cos alpha}dalpha$ and then evaluate that by contour integration.
– Daniel Schepler
Nov 21 '18 at 1:58
1
1
$z^4 = (z^2)^2$ so you can use the quadratic formula to get the roots.
– Winther
Nov 21 '18 at 0:19
$z^4 = (z^2)^2$ so you can use the quadratic formula to get the roots.
– Winther
Nov 21 '18 at 0:19
1
1
Note that $z^4 - 6z^2 + 1 = (z^2)^2 - 6(z^2) + 1$ can be factored using the quadratic formula. Alternatively, $u = z^2$ works as a $u$-substitution.
– Omnomnomnom
Nov 21 '18 at 0:20
Note that $z^4 - 6z^2 + 1 = (z^2)^2 - 6(z^2) + 1$ can be factored using the quadratic formula. Alternatively, $u = z^2$ works as a $u$-substitution.
– Omnomnomnom
Nov 21 '18 at 0:20
1
1
You could write $I = int_0^{2pi} frac{1}{1 + frac{1}{2} (1 - cos(2theta))} dtheta = int_0^{2pi} frac{2}{3 - cos(2theta)}dtheta = int_0^{4pi} frac{1}{3 - cos alpha}dalpha = 2 int_0^{2pi} frac{1}{3-cos alpha}dalpha$ and then evaluate that by contour integration.
– Daniel Schepler
Nov 21 '18 at 1:58
You could write $I = int_0^{2pi} frac{1}{1 + frac{1}{2} (1 - cos(2theta))} dtheta = int_0^{2pi} frac{2}{3 - cos(2theta)}dtheta = int_0^{4pi} frac{1}{3 - cos alpha}dalpha = 2 int_0^{2pi} frac{1}{3-cos alpha}dalpha$ and then evaluate that by contour integration.
– Daniel Schepler
Nov 21 '18 at 1:58
add a comment |
3 Answers
3
active
oldest
votes
Contour integration is a chance, but not the only one. For instance, symmetry gives
$$ int_{0}^{2pi}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+cos^2theta}stackrel{thetamapstoarctan u}{=}4int_{0}^{+infty}frac{du}{2+u^2} $$
and the last integral clearly equals $color{red}{pisqrt{2}}$.
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
add a comment |
$$I=intfrac{mathrm{d}x}{1+sin^2x}$$
Recall that $sin x=frac{tan x}{sec x}$:
$$I=intfrac{mathrm{d}x}{1+frac{tan^2x}{sec^2x}}$$
$$I=intfrac{sec^2x mathrm{d}x}{sec^2x+tan^2x}$$
$$I=intfrac{sec^2x mathrm{d}x}{1+2tan^2x}$$
$u=tan x$:
$$I=intfrac{mathrm{d}u}{1+2u^2}$$
$u=frac1{sqrt{2}}tan w$:
$$I=frac1{sqrt{2}}intfrac{sec^2wmathrm{d}w}{1+tan^2w}$$
$$I=frac1{sqrt{2}}w$$
$$I=frac1{sqrt{2}}arctansqrt{2}tan x$$
$$Ibigg|_0^{2pi}=pisqrt2$$
add a comment |
How about using Weierstrauss substitution.
$$I=int_0^{2pi}frac{1}{1+sin^2(x)}dx$$
$t=tanfrac{x}{2}$ so it becomes:
$$I=4int_0^inftyfrac{1}{1+left(frac{2t}{1+t^2}right)^2}frac{dt}{1+t^2}=4int_0^inftyfrac{1+t^2}{(1+t^2)^2+(2t)^2}dt$$
$$=4int_0^inftyfrac{t^2+1}{t^4+6t^2+1}dt=4int_0^inftyfrac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}dt$$
now using partial fractions:
$$frac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}=frac{At+B}{t^2+3-2sqrt{2}}+frac{Ct+D}{t^2+3+2sqrt{2}}$$
giving us the simultaneous equations:
$$A+C=0$$$$B+D=1$$$$(3+2sqrt{2})A+(3-2sqrt{2})C=0$$$$(3+2sqrt{2})B+(3-2sqrt{2})D=1$$
Both $A$ and $C$ come out as $0$ so some form of $tan$ substitution can be used to solve the two integrals that are formed.
1
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007087%2fhow-to-evaluate-int-02-pi-frac11-sin2-thetad-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Contour integration is a chance, but not the only one. For instance, symmetry gives
$$ int_{0}^{2pi}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+cos^2theta}stackrel{thetamapstoarctan u}{=}4int_{0}^{+infty}frac{du}{2+u^2} $$
and the last integral clearly equals $color{red}{pisqrt{2}}$.
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
add a comment |
Contour integration is a chance, but not the only one. For instance, symmetry gives
$$ int_{0}^{2pi}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+cos^2theta}stackrel{thetamapstoarctan u}{=}4int_{0}^{+infty}frac{du}{2+u^2} $$
and the last integral clearly equals $color{red}{pisqrt{2}}$.
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
add a comment |
Contour integration is a chance, but not the only one. For instance, symmetry gives
$$ int_{0}^{2pi}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+cos^2theta}stackrel{thetamapstoarctan u}{=}4int_{0}^{+infty}frac{du}{2+u^2} $$
and the last integral clearly equals $color{red}{pisqrt{2}}$.
Contour integration is a chance, but not the only one. For instance, symmetry gives
$$ int_{0}^{2pi}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+sin^2theta}=4int_{0}^{pi/2}frac{dtheta}{1+cos^2theta}stackrel{thetamapstoarctan u}{=}4int_{0}^{+infty}frac{du}{2+u^2} $$
and the last integral clearly equals $color{red}{pisqrt{2}}$.
answered Nov 21 '18 at 0:35


Jack D'Aurizio
287k33280657
287k33280657
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
add a comment |
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
“clearly” not so clear
– Lucas Henrique
Nov 21 '18 at 8:29
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
@LucasHenrique: well, $int_{a}^{b}frac{dx}{1+x^2}=arctan(b)-arctan(a)$ and by letting $u=sqrt{2},x$...
– Jack D'Aurizio
Nov 21 '18 at 16:42
add a comment |
$$I=intfrac{mathrm{d}x}{1+sin^2x}$$
Recall that $sin x=frac{tan x}{sec x}$:
$$I=intfrac{mathrm{d}x}{1+frac{tan^2x}{sec^2x}}$$
$$I=intfrac{sec^2x mathrm{d}x}{sec^2x+tan^2x}$$
$$I=intfrac{sec^2x mathrm{d}x}{1+2tan^2x}$$
$u=tan x$:
$$I=intfrac{mathrm{d}u}{1+2u^2}$$
$u=frac1{sqrt{2}}tan w$:
$$I=frac1{sqrt{2}}intfrac{sec^2wmathrm{d}w}{1+tan^2w}$$
$$I=frac1{sqrt{2}}w$$
$$I=frac1{sqrt{2}}arctansqrt{2}tan x$$
$$Ibigg|_0^{2pi}=pisqrt2$$
add a comment |
$$I=intfrac{mathrm{d}x}{1+sin^2x}$$
Recall that $sin x=frac{tan x}{sec x}$:
$$I=intfrac{mathrm{d}x}{1+frac{tan^2x}{sec^2x}}$$
$$I=intfrac{sec^2x mathrm{d}x}{sec^2x+tan^2x}$$
$$I=intfrac{sec^2x mathrm{d}x}{1+2tan^2x}$$
$u=tan x$:
$$I=intfrac{mathrm{d}u}{1+2u^2}$$
$u=frac1{sqrt{2}}tan w$:
$$I=frac1{sqrt{2}}intfrac{sec^2wmathrm{d}w}{1+tan^2w}$$
$$I=frac1{sqrt{2}}w$$
$$I=frac1{sqrt{2}}arctansqrt{2}tan x$$
$$Ibigg|_0^{2pi}=pisqrt2$$
add a comment |
$$I=intfrac{mathrm{d}x}{1+sin^2x}$$
Recall that $sin x=frac{tan x}{sec x}$:
$$I=intfrac{mathrm{d}x}{1+frac{tan^2x}{sec^2x}}$$
$$I=intfrac{sec^2x mathrm{d}x}{sec^2x+tan^2x}$$
$$I=intfrac{sec^2x mathrm{d}x}{1+2tan^2x}$$
$u=tan x$:
$$I=intfrac{mathrm{d}u}{1+2u^2}$$
$u=frac1{sqrt{2}}tan w$:
$$I=frac1{sqrt{2}}intfrac{sec^2wmathrm{d}w}{1+tan^2w}$$
$$I=frac1{sqrt{2}}w$$
$$I=frac1{sqrt{2}}arctansqrt{2}tan x$$
$$Ibigg|_0^{2pi}=pisqrt2$$
$$I=intfrac{mathrm{d}x}{1+sin^2x}$$
Recall that $sin x=frac{tan x}{sec x}$:
$$I=intfrac{mathrm{d}x}{1+frac{tan^2x}{sec^2x}}$$
$$I=intfrac{sec^2x mathrm{d}x}{sec^2x+tan^2x}$$
$$I=intfrac{sec^2x mathrm{d}x}{1+2tan^2x}$$
$u=tan x$:
$$I=intfrac{mathrm{d}u}{1+2u^2}$$
$u=frac1{sqrt{2}}tan w$:
$$I=frac1{sqrt{2}}intfrac{sec^2wmathrm{d}w}{1+tan^2w}$$
$$I=frac1{sqrt{2}}w$$
$$I=frac1{sqrt{2}}arctansqrt{2}tan x$$
$$Ibigg|_0^{2pi}=pisqrt2$$
answered Nov 21 '18 at 1:49


clathratus
3,243331
3,243331
add a comment |
add a comment |
How about using Weierstrauss substitution.
$$I=int_0^{2pi}frac{1}{1+sin^2(x)}dx$$
$t=tanfrac{x}{2}$ so it becomes:
$$I=4int_0^inftyfrac{1}{1+left(frac{2t}{1+t^2}right)^2}frac{dt}{1+t^2}=4int_0^inftyfrac{1+t^2}{(1+t^2)^2+(2t)^2}dt$$
$$=4int_0^inftyfrac{t^2+1}{t^4+6t^2+1}dt=4int_0^inftyfrac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}dt$$
now using partial fractions:
$$frac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}=frac{At+B}{t^2+3-2sqrt{2}}+frac{Ct+D}{t^2+3+2sqrt{2}}$$
giving us the simultaneous equations:
$$A+C=0$$$$B+D=1$$$$(3+2sqrt{2})A+(3-2sqrt{2})C=0$$$$(3+2sqrt{2})B+(3-2sqrt{2})D=1$$
Both $A$ and $C$ come out as $0$ so some form of $tan$ substitution can be used to solve the two integrals that are formed.
1
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
add a comment |
How about using Weierstrauss substitution.
$$I=int_0^{2pi}frac{1}{1+sin^2(x)}dx$$
$t=tanfrac{x}{2}$ so it becomes:
$$I=4int_0^inftyfrac{1}{1+left(frac{2t}{1+t^2}right)^2}frac{dt}{1+t^2}=4int_0^inftyfrac{1+t^2}{(1+t^2)^2+(2t)^2}dt$$
$$=4int_0^inftyfrac{t^2+1}{t^4+6t^2+1}dt=4int_0^inftyfrac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}dt$$
now using partial fractions:
$$frac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}=frac{At+B}{t^2+3-2sqrt{2}}+frac{Ct+D}{t^2+3+2sqrt{2}}$$
giving us the simultaneous equations:
$$A+C=0$$$$B+D=1$$$$(3+2sqrt{2})A+(3-2sqrt{2})C=0$$$$(3+2sqrt{2})B+(3-2sqrt{2})D=1$$
Both $A$ and $C$ come out as $0$ so some form of $tan$ substitution can be used to solve the two integrals that are formed.
1
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
add a comment |
How about using Weierstrauss substitution.
$$I=int_0^{2pi}frac{1}{1+sin^2(x)}dx$$
$t=tanfrac{x}{2}$ so it becomes:
$$I=4int_0^inftyfrac{1}{1+left(frac{2t}{1+t^2}right)^2}frac{dt}{1+t^2}=4int_0^inftyfrac{1+t^2}{(1+t^2)^2+(2t)^2}dt$$
$$=4int_0^inftyfrac{t^2+1}{t^4+6t^2+1}dt=4int_0^inftyfrac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}dt$$
now using partial fractions:
$$frac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}=frac{At+B}{t^2+3-2sqrt{2}}+frac{Ct+D}{t^2+3+2sqrt{2}}$$
giving us the simultaneous equations:
$$A+C=0$$$$B+D=1$$$$(3+2sqrt{2})A+(3-2sqrt{2})C=0$$$$(3+2sqrt{2})B+(3-2sqrt{2})D=1$$
Both $A$ and $C$ come out as $0$ so some form of $tan$ substitution can be used to solve the two integrals that are formed.
How about using Weierstrauss substitution.
$$I=int_0^{2pi}frac{1}{1+sin^2(x)}dx$$
$t=tanfrac{x}{2}$ so it becomes:
$$I=4int_0^inftyfrac{1}{1+left(frac{2t}{1+t^2}right)^2}frac{dt}{1+t^2}=4int_0^inftyfrac{1+t^2}{(1+t^2)^2+(2t)^2}dt$$
$$=4int_0^inftyfrac{t^2+1}{t^4+6t^2+1}dt=4int_0^inftyfrac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}dt$$
now using partial fractions:
$$frac{t^2+1}{(t^2+3-2sqrt{2})(t^2+3+2sqrt{2})}=frac{At+B}{t^2+3-2sqrt{2}}+frac{Ct+D}{t^2+3+2sqrt{2}}$$
giving us the simultaneous equations:
$$A+C=0$$$$B+D=1$$$$(3+2sqrt{2})A+(3-2sqrt{2})C=0$$$$(3+2sqrt{2})B+(3-2sqrt{2})D=1$$
Both $A$ and $C$ come out as $0$ so some form of $tan$ substitution can be used to solve the two integrals that are formed.
answered Nov 21 '18 at 3:34
Henry Lee
1,773218
1,773218
1
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
add a comment |
1
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
1
1
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
You can simplify the algebra by first using the cosine double angle formula $sin^2(x) = (1/2)(1 - cos(2x))$ and then a change of formula $u = 2x$ and then apply the Weierstrass substitution.
– DavidG
Nov 21 '18 at 4:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007087%2fhow-to-evaluate-int-02-pi-frac11-sin2-thetad-theta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$z^4 = (z^2)^2$ so you can use the quadratic formula to get the roots.
– Winther
Nov 21 '18 at 0:19
1
Note that $z^4 - 6z^2 + 1 = (z^2)^2 - 6(z^2) + 1$ can be factored using the quadratic formula. Alternatively, $u = z^2$ works as a $u$-substitution.
– Omnomnomnom
Nov 21 '18 at 0:20
1
You could write $I = int_0^{2pi} frac{1}{1 + frac{1}{2} (1 - cos(2theta))} dtheta = int_0^{2pi} frac{2}{3 - cos(2theta)}dtheta = int_0^{4pi} frac{1}{3 - cos alpha}dalpha = 2 int_0^{2pi} frac{1}{3-cos alpha}dalpha$ and then evaluate that by contour integration.
– Daniel Schepler
Nov 21 '18 at 1:58