How to show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
add a comment |
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 '18 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 '18 at 2:39
add a comment |
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
Show $frac{Gamma((n-1)/2)}{Gamma(n/2)} approx frac{sqrt{2}}{sqrt{n-2}}$
Try
Using the facts:
$(1 + alpha/m)^m = e^alpha ( 1+ r_m)$, where $lim_{m to infty} sqrt{m}r_m = 0$
$Gamma(n+1) = n^{n + 1/2} e^{-n} sqrt{2 pi} (1 + r_n)$, where $lim_{n to infty} sqrt{n}r_n = 0$
Note :
$$
begin{aligned}
frac{Gamma((n-1)/2)}{Gamma(n/2)} &= frac{left(frac{n-3}{2}right)^{(n-2)/2} e^{-(n-3)/2}(sqrt{2pi}(1 + r_{1n})}{left(frac{n-2}{2}right)^{(n-1)/2} e^{-(n-2)/2}(sqrt{2pi}(1 + r_{2n})} \
&=left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right) times frac{sqrt{2}}{sqrt{n-2}}
end{aligned}
$$
But I'm stuck at how I should proceed to eliminate the $left( left(frac{n-3}{n-2}right)^{(n-2)/2} sqrt{e} frac{1+r_{1n}}{1 + r_{2n}} right)$ term.
approximation gamma-function
approximation gamma-function
asked Nov 21 '18 at 2:20
Moreblue
8721216
8721216
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 '18 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 '18 at 2:39
add a comment |
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 '18 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 '18 at 2:39
2
2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 '18 at 2:21
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 '18 at 2:21
2
2
what is your definition of $approx$??
– Masacroso
Nov 21 '18 at 2:39
what is your definition of $approx$??
– Masacroso
Nov 21 '18 at 2:39
add a comment |
1 Answer
1
active
oldest
votes
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007166%2fhow-to-show-frac-gamman-1-2-gamman-2-approx-frac-sqrt2-sqrtn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
add a comment |
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
add a comment |
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
A possible approach:
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}=tfrac{1}{sqrt{pi}},Bleft(tfrac{n-1}{2},tfrac{1}{2}right)=frac{1}{sqrt{pi}}int_{0}^{1}x^{frac{n-3}{2}}(1-x)^{-1/2},dx=frac{2}{sqrt{pi}}int_{0}^{1}frac{x^{n-2}}{sqrt{1-x^2}},dx $$
gives
$$ frac{Gammaleft(tfrac{n-1}{2}right)}{Gammaleft(tfrac{n}{2}right)}= frac{2}{sqrt{pi}}int_{0}^{pi/2}left(costhetaright)^{n-2},dthetasimfrac{2}{sqrt{pi}}int_{0}^{+infty}expleft[-(n-2)frac{theta^2}{2}right]dtheta=sqrt{frac{2}{n-2}}. $$
Notice that the integral representation (as a moment) instantly gives that the LHS is a log-convex function. The asymptotic equivalence $sim$ can be seen as an instance of Laplace/Hayman's method.
edited Nov 21 '18 at 2:57
answered Nov 21 '18 at 2:27
Jack D'Aurizio
287k33280657
287k33280657
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007166%2fhow-to-show-frac-gamman-1-2-gamman-2-approx-frac-sqrt2-sqrtn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

2
What is your definition of $Gamma$? According to it, proving Gautschi's inequality might be more or less trivial.
– Jack D'Aurizio
Nov 21 '18 at 2:21
2
what is your definition of $approx$??
– Masacroso
Nov 21 '18 at 2:39