I'm stuck with these Laplace problems
$begingroup$
I'm stuck on solving (4)(ii) and 4(b), I have tried to solve them but got stuck in the middle, any hints?
This is where I have gotten in (4)(a)(ii) and (4)(b)(i), I have no idea how to start solving on (4)(b)(ii)
calculus laplace-transform
$endgroup$
add a comment |
$begingroup$
I'm stuck on solving (4)(ii) and 4(b), I have tried to solve them but got stuck in the middle, any hints?
This is where I have gotten in (4)(a)(ii) and (4)(b)(i), I have no idea how to start solving on (4)(b)(ii)
calculus laplace-transform
$endgroup$
1
$begingroup$
Can you show your work so far and where you got stuck?
$endgroup$
– Alex
Jan 19 at 15:56
$begingroup$
@Alex I have edited and added my work so far
$endgroup$
– Youssef Walid
Jan 19 at 16:07
add a comment |
$begingroup$
I'm stuck on solving (4)(ii) and 4(b), I have tried to solve them but got stuck in the middle, any hints?
This is where I have gotten in (4)(a)(ii) and (4)(b)(i), I have no idea how to start solving on (4)(b)(ii)
calculus laplace-transform
$endgroup$
I'm stuck on solving (4)(ii) and 4(b), I have tried to solve them but got stuck in the middle, any hints?
This is where I have gotten in (4)(a)(ii) and (4)(b)(i), I have no idea how to start solving on (4)(b)(ii)
calculus laplace-transform
calculus laplace-transform
edited Jan 19 at 16:07
Youssef Walid
asked Jan 19 at 15:53
Youssef WalidYoussef Walid
605
605
1
$begingroup$
Can you show your work so far and where you got stuck?
$endgroup$
– Alex
Jan 19 at 15:56
$begingroup$
@Alex I have edited and added my work so far
$endgroup$
– Youssef Walid
Jan 19 at 16:07
add a comment |
1
$begingroup$
Can you show your work so far and where you got stuck?
$endgroup$
– Alex
Jan 19 at 15:56
$begingroup$
@Alex I have edited and added my work so far
$endgroup$
– Youssef Walid
Jan 19 at 16:07
1
1
$begingroup$
Can you show your work so far and where you got stuck?
$endgroup$
– Alex
Jan 19 at 15:56
$begingroup$
Can you show your work so far and where you got stuck?
$endgroup$
– Alex
Jan 19 at 15:56
$begingroup$
@Alex I have edited and added my work so far
$endgroup$
– Youssef Walid
Jan 19 at 16:07
$begingroup$
@Alex I have edited and added my work so far
$endgroup$
– Youssef Walid
Jan 19 at 16:07
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For 4aii), Remember your Laplace transform properties and notice that
$$ frac{mathrm{d}}{mathrm{d}s}frac{s}{s^{2}+4} = -frac{s^{2}-4}{(s^{2}+4)^{2}},$$
motivating the manipulation
$$ frac{s^{2}}{s^{2}+4} = frac{1}{2}left(frac{s^{2}-4}{(s^{2}+4)^{2}} + frac{s^{2}+4}{(s^{2}+4)^{2}}right).$$
Alternatively, you can compute the Bromwich integral
$$ f(t) = frac{1}{2pi i}lim_{Rtoinfty}int_{a-iR}^{a+iR}frac{s^{2}}{(s^{2}+4)^{2}},e^{st},mathrm{d}s.$$
It involves finding the residues of the second-order poles at $s = pm 2i$ and summing them.
4bi) is similar. Notice that
$$ frac{9}{(s^{2}+9)^{2}} = frac{1}{2}left(frac{9+s^{2}}{(s^{2}+9)^{2}} + frac{9-s^{2}}{(s^{2}+9)^{2}}right).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079490%2fim-stuck-with-these-laplace-problems%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For 4aii), Remember your Laplace transform properties and notice that
$$ frac{mathrm{d}}{mathrm{d}s}frac{s}{s^{2}+4} = -frac{s^{2}-4}{(s^{2}+4)^{2}},$$
motivating the manipulation
$$ frac{s^{2}}{s^{2}+4} = frac{1}{2}left(frac{s^{2}-4}{(s^{2}+4)^{2}} + frac{s^{2}+4}{(s^{2}+4)^{2}}right).$$
Alternatively, you can compute the Bromwich integral
$$ f(t) = frac{1}{2pi i}lim_{Rtoinfty}int_{a-iR}^{a+iR}frac{s^{2}}{(s^{2}+4)^{2}},e^{st},mathrm{d}s.$$
It involves finding the residues of the second-order poles at $s = pm 2i$ and summing them.
4bi) is similar. Notice that
$$ frac{9}{(s^{2}+9)^{2}} = frac{1}{2}left(frac{9+s^{2}}{(s^{2}+9)^{2}} + frac{9-s^{2}}{(s^{2}+9)^{2}}right).$$
$endgroup$
add a comment |
$begingroup$
For 4aii), Remember your Laplace transform properties and notice that
$$ frac{mathrm{d}}{mathrm{d}s}frac{s}{s^{2}+4} = -frac{s^{2}-4}{(s^{2}+4)^{2}},$$
motivating the manipulation
$$ frac{s^{2}}{s^{2}+4} = frac{1}{2}left(frac{s^{2}-4}{(s^{2}+4)^{2}} + frac{s^{2}+4}{(s^{2}+4)^{2}}right).$$
Alternatively, you can compute the Bromwich integral
$$ f(t) = frac{1}{2pi i}lim_{Rtoinfty}int_{a-iR}^{a+iR}frac{s^{2}}{(s^{2}+4)^{2}},e^{st},mathrm{d}s.$$
It involves finding the residues of the second-order poles at $s = pm 2i$ and summing them.
4bi) is similar. Notice that
$$ frac{9}{(s^{2}+9)^{2}} = frac{1}{2}left(frac{9+s^{2}}{(s^{2}+9)^{2}} + frac{9-s^{2}}{(s^{2}+9)^{2}}right).$$
$endgroup$
add a comment |
$begingroup$
For 4aii), Remember your Laplace transform properties and notice that
$$ frac{mathrm{d}}{mathrm{d}s}frac{s}{s^{2}+4} = -frac{s^{2}-4}{(s^{2}+4)^{2}},$$
motivating the manipulation
$$ frac{s^{2}}{s^{2}+4} = frac{1}{2}left(frac{s^{2}-4}{(s^{2}+4)^{2}} + frac{s^{2}+4}{(s^{2}+4)^{2}}right).$$
Alternatively, you can compute the Bromwich integral
$$ f(t) = frac{1}{2pi i}lim_{Rtoinfty}int_{a-iR}^{a+iR}frac{s^{2}}{(s^{2}+4)^{2}},e^{st},mathrm{d}s.$$
It involves finding the residues of the second-order poles at $s = pm 2i$ and summing them.
4bi) is similar. Notice that
$$ frac{9}{(s^{2}+9)^{2}} = frac{1}{2}left(frac{9+s^{2}}{(s^{2}+9)^{2}} + frac{9-s^{2}}{(s^{2}+9)^{2}}right).$$
$endgroup$
For 4aii), Remember your Laplace transform properties and notice that
$$ frac{mathrm{d}}{mathrm{d}s}frac{s}{s^{2}+4} = -frac{s^{2}-4}{(s^{2}+4)^{2}},$$
motivating the manipulation
$$ frac{s^{2}}{s^{2}+4} = frac{1}{2}left(frac{s^{2}-4}{(s^{2}+4)^{2}} + frac{s^{2}+4}{(s^{2}+4)^{2}}right).$$
Alternatively, you can compute the Bromwich integral
$$ f(t) = frac{1}{2pi i}lim_{Rtoinfty}int_{a-iR}^{a+iR}frac{s^{2}}{(s^{2}+4)^{2}},e^{st},mathrm{d}s.$$
It involves finding the residues of the second-order poles at $s = pm 2i$ and summing them.
4bi) is similar. Notice that
$$ frac{9}{(s^{2}+9)^{2}} = frac{1}{2}left(frac{9+s^{2}}{(s^{2}+9)^{2}} + frac{9-s^{2}}{(s^{2}+9)^{2}}right).$$
answered Jan 20 at 3:03
IninterrompueIninterrompue
67519
67519
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079490%2fim-stuck-with-these-laplace-problems%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Can you show your work so far and where you got stuck?
$endgroup$
– Alex
Jan 19 at 15:56
$begingroup$
@Alex I have edited and added my work so far
$endgroup$
– Youssef Walid
Jan 19 at 16:07