Integer solutions to $t^p-(r^p+s^p)=pk_1$ and $t^p-left[(t-r)^p+(t-s)^pright]=p k_2$, where p is an odd prime
$begingroup$
This much re-edited question develops on from this question If $t^p-(r^p+s^p) equiv 0 (mod p)$ implies $t-(r+s)=pq$, do other solutions exist for relatively prime $r$, $s$ and $t$?
If the set of solutions to $t-(r+s) =pq$, where $q$ is a non-zero positive integer, contains the complete set of solutions in $(r,s,t,p)$ to $t^p-(r^p+s^p) equiv 0 ;( text{mod}; p)$
Then this implies that
$$t-(r+s) =pq tag{1}$$
and
$$t-((t-r)+(t-s))=(r+s)-t=pqtag{2}$$
, where $q$ is a positive integer, contain the complete set of solutions in $(r,s,t,p)$ to
$$t^p-(r^p+s^p)=p k_1tag{3}$$
and
$$t^p-left[(t-r)^p+(t-s)^pright]=p k_2tag{4}$$
respectively, where $k_1$ and $k_2$ are positive integers.
I think the sum of (3) and (4) gives
$$left(t^p-(r^p+s^p)right)+left(t^p-left[(t-r)^p+(t-s)^pright]right)=ptk=p t (frac{k_1+k_2}{t})$$
where $k_1+k_2$ is always divisible by t.
For the case $p=3$ with $t-(r+s)=3q$, we have
$$t^3-(r^3+s^3)=3left(3tq(r+s)+rst-3q(rs-3q^2)right)$$
and
$$t^3-left[(t-r)^3+(t-s)^3right]=3left(rst+3q(rs-3q^2)right)$$
with the sum of these being
$$left(t^3-(r^3+s^3)right)+left(t^3-left[(t-r)^3+(t-s)^3right]right)=3t(3q(r+s)+2rs)$$
If there exists a solution $t^3-left[(t-r)^3+(t-s)^3 right]=0$ then $3rst=-3^2q(rs-3q^2)$.
Now I have to work out if the algebra is tractable for any odd prime p.
elementary-number-theory
$endgroup$
add a comment |
$begingroup$
This much re-edited question develops on from this question If $t^p-(r^p+s^p) equiv 0 (mod p)$ implies $t-(r+s)=pq$, do other solutions exist for relatively prime $r$, $s$ and $t$?
If the set of solutions to $t-(r+s) =pq$, where $q$ is a non-zero positive integer, contains the complete set of solutions in $(r,s,t,p)$ to $t^p-(r^p+s^p) equiv 0 ;( text{mod}; p)$
Then this implies that
$$t-(r+s) =pq tag{1}$$
and
$$t-((t-r)+(t-s))=(r+s)-t=pqtag{2}$$
, where $q$ is a positive integer, contain the complete set of solutions in $(r,s,t,p)$ to
$$t^p-(r^p+s^p)=p k_1tag{3}$$
and
$$t^p-left[(t-r)^p+(t-s)^pright]=p k_2tag{4}$$
respectively, where $k_1$ and $k_2$ are positive integers.
I think the sum of (3) and (4) gives
$$left(t^p-(r^p+s^p)right)+left(t^p-left[(t-r)^p+(t-s)^pright]right)=ptk=p t (frac{k_1+k_2}{t})$$
where $k_1+k_2$ is always divisible by t.
For the case $p=3$ with $t-(r+s)=3q$, we have
$$t^3-(r^3+s^3)=3left(3tq(r+s)+rst-3q(rs-3q^2)right)$$
and
$$t^3-left[(t-r)^3+(t-s)^3right]=3left(rst+3q(rs-3q^2)right)$$
with the sum of these being
$$left(t^3-(r^3+s^3)right)+left(t^3-left[(t-r)^3+(t-s)^3right]right)=3t(3q(r+s)+2rs)$$
If there exists a solution $t^3-left[(t-r)^3+(t-s)^3 right]=0$ then $3rst=-3^2q(rs-3q^2)$.
Now I have to work out if the algebra is tractable for any odd prime p.
elementary-number-theory
$endgroup$
add a comment |
$begingroup$
This much re-edited question develops on from this question If $t^p-(r^p+s^p) equiv 0 (mod p)$ implies $t-(r+s)=pq$, do other solutions exist for relatively prime $r$, $s$ and $t$?
If the set of solutions to $t-(r+s) =pq$, where $q$ is a non-zero positive integer, contains the complete set of solutions in $(r,s,t,p)$ to $t^p-(r^p+s^p) equiv 0 ;( text{mod}; p)$
Then this implies that
$$t-(r+s) =pq tag{1}$$
and
$$t-((t-r)+(t-s))=(r+s)-t=pqtag{2}$$
, where $q$ is a positive integer, contain the complete set of solutions in $(r,s,t,p)$ to
$$t^p-(r^p+s^p)=p k_1tag{3}$$
and
$$t^p-left[(t-r)^p+(t-s)^pright]=p k_2tag{4}$$
respectively, where $k_1$ and $k_2$ are positive integers.
I think the sum of (3) and (4) gives
$$left(t^p-(r^p+s^p)right)+left(t^p-left[(t-r)^p+(t-s)^pright]right)=ptk=p t (frac{k_1+k_2}{t})$$
where $k_1+k_2$ is always divisible by t.
For the case $p=3$ with $t-(r+s)=3q$, we have
$$t^3-(r^3+s^3)=3left(3tq(r+s)+rst-3q(rs-3q^2)right)$$
and
$$t^3-left[(t-r)^3+(t-s)^3right]=3left(rst+3q(rs-3q^2)right)$$
with the sum of these being
$$left(t^3-(r^3+s^3)right)+left(t^3-left[(t-r)^3+(t-s)^3right]right)=3t(3q(r+s)+2rs)$$
If there exists a solution $t^3-left[(t-r)^3+(t-s)^3 right]=0$ then $3rst=-3^2q(rs-3q^2)$.
Now I have to work out if the algebra is tractable for any odd prime p.
elementary-number-theory
$endgroup$
This much re-edited question develops on from this question If $t^p-(r^p+s^p) equiv 0 (mod p)$ implies $t-(r+s)=pq$, do other solutions exist for relatively prime $r$, $s$ and $t$?
If the set of solutions to $t-(r+s) =pq$, where $q$ is a non-zero positive integer, contains the complete set of solutions in $(r,s,t,p)$ to $t^p-(r^p+s^p) equiv 0 ;( text{mod}; p)$
Then this implies that
$$t-(r+s) =pq tag{1}$$
and
$$t-((t-r)+(t-s))=(r+s)-t=pqtag{2}$$
, where $q$ is a positive integer, contain the complete set of solutions in $(r,s,t,p)$ to
$$t^p-(r^p+s^p)=p k_1tag{3}$$
and
$$t^p-left[(t-r)^p+(t-s)^pright]=p k_2tag{4}$$
respectively, where $k_1$ and $k_2$ are positive integers.
I think the sum of (3) and (4) gives
$$left(t^p-(r^p+s^p)right)+left(t^p-left[(t-r)^p+(t-s)^pright]right)=ptk=p t (frac{k_1+k_2}{t})$$
where $k_1+k_2$ is always divisible by t.
For the case $p=3$ with $t-(r+s)=3q$, we have
$$t^3-(r^3+s^3)=3left(3tq(r+s)+rst-3q(rs-3q^2)right)$$
and
$$t^3-left[(t-r)^3+(t-s)^3right]=3left(rst+3q(rs-3q^2)right)$$
with the sum of these being
$$left(t^3-(r^3+s^3)right)+left(t^3-left[(t-r)^3+(t-s)^3right]right)=3t(3q(r+s)+2rs)$$
If there exists a solution $t^3-left[(t-r)^3+(t-s)^3 right]=0$ then $3rst=-3^2q(rs-3q^2)$.
Now I have to work out if the algebra is tractable for any odd prime p.
elementary-number-theory
elementary-number-theory
edited Jan 20 at 17:04
James Arathoon
asked Jan 19 at 2:15
James ArathoonJames Arathoon
1,546423
1,546423
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078948%2finteger-solutions-to-tp-rpsp-pk-1-and-tp-leftt-rpt-sp-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078948%2finteger-solutions-to-tp-rpsp-pk-1-and-tp-leftt-rpt-sp-right%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown