Interchanging Sums












0












$begingroup$


I'm looking to prove that if $a_{ij} geq 0$ then



$$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.



For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.



I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
$$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I'm looking to prove that if $a_{ij} geq 0$ then



    $$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.



    For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.



    I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
    $$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
    which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I'm looking to prove that if $a_{ij} geq 0$ then



      $$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.



      For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.



      I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
      $$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
      which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.










      share|cite|improve this question









      $endgroup$




      I'm looking to prove that if $a_{ij} geq 0$ then



      $$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.



      For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.



      I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
      $$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
      which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.







      real-analysis sequences-and-series






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 23 at 21:40









      RdrrRdrr

      208111




      208111






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
            $endgroup$
            – Rdrr
            Jan 23 at 21:47












          • $begingroup$
            Related:math.stackexchange.com/questions/3079002/…
            $endgroup$
            – Peter Szilas
            Jan 23 at 22:09










          • $begingroup$
            That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
            $endgroup$
            – Rdrr
            Jan 23 at 23:11










          • $begingroup$
            Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
            $endgroup$
            – NotoriousJuanG
            Jan 24 at 0:42





















          1












          $begingroup$

          Note that since $a_{ij} geqslant 0$,



          $$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$



          where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.



          (The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).



          Thus,



          $$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085118%2finterchanging-sums%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 21:47












              • $begingroup$
                Related:math.stackexchange.com/questions/3079002/…
                $endgroup$
                – Peter Szilas
                Jan 23 at 22:09










              • $begingroup$
                That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 23:11










              • $begingroup$
                Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
                $endgroup$
                – NotoriousJuanG
                Jan 24 at 0:42


















              2












              $begingroup$

              Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 21:47












              • $begingroup$
                Related:math.stackexchange.com/questions/3079002/…
                $endgroup$
                – Peter Szilas
                Jan 23 at 22:09










              • $begingroup$
                That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 23:11










              • $begingroup$
                Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
                $endgroup$
                – NotoriousJuanG
                Jan 24 at 0:42
















              2












              2








              2





              $begingroup$

              Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.






              share|cite|improve this answer









              $endgroup$



              Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 23 at 21:43









              NotoriousJuanGNotoriousJuanG

              843




              843












              • $begingroup$
                How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 21:47












              • $begingroup$
                Related:math.stackexchange.com/questions/3079002/…
                $endgroup$
                – Peter Szilas
                Jan 23 at 22:09










              • $begingroup$
                That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 23:11










              • $begingroup$
                Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
                $endgroup$
                – NotoriousJuanG
                Jan 24 at 0:42




















              • $begingroup$
                How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 21:47












              • $begingroup$
                Related:math.stackexchange.com/questions/3079002/…
                $endgroup$
                – Peter Szilas
                Jan 23 at 22:09










              • $begingroup$
                That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
                $endgroup$
                – Rdrr
                Jan 23 at 23:11










              • $begingroup$
                Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
                $endgroup$
                – NotoriousJuanG
                Jan 24 at 0:42


















              $begingroup$
              How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
              $endgroup$
              – Rdrr
              Jan 23 at 21:47






              $begingroup$
              How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
              $endgroup$
              – Rdrr
              Jan 23 at 21:47














              $begingroup$
              Related:math.stackexchange.com/questions/3079002/…
              $endgroup$
              – Peter Szilas
              Jan 23 at 22:09




              $begingroup$
              Related:math.stackexchange.com/questions/3079002/…
              $endgroup$
              – Peter Szilas
              Jan 23 at 22:09












              $begingroup$
              That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
              $endgroup$
              – Rdrr
              Jan 23 at 23:11




              $begingroup$
              That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
              $endgroup$
              – Rdrr
              Jan 23 at 23:11












              $begingroup$
              Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
              $endgroup$
              – NotoriousJuanG
              Jan 24 at 0:42






              $begingroup$
              Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
              $endgroup$
              – NotoriousJuanG
              Jan 24 at 0:42













              1












              $begingroup$

              Note that since $a_{ij} geqslant 0$,



              $$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$



              where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.



              (The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).



              Thus,



              $$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Note that since $a_{ij} geqslant 0$,



                $$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$



                where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.



                (The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).



                Thus,



                $$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Note that since $a_{ij} geqslant 0$,



                  $$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$



                  where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.



                  (The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).



                  Thus,



                  $$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$






                  share|cite|improve this answer











                  $endgroup$



                  Note that since $a_{ij} geqslant 0$,



                  $$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$



                  where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.



                  (The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).



                  Thus,



                  $$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 23 at 23:23

























                  answered Jan 23 at 23:17









                  RRLRRL

                  52.6k42573




                  52.6k42573























                      1












                      $begingroup$

                      Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.






                          share|cite|improve this answer









                          $endgroup$



                          Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 23 at 23:23









                          Kavi Rama MurthyKavi Rama Murthy

                          67.5k53067




                          67.5k53067






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085118%2finterchanging-sums%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith