Interchanging Sums
$begingroup$
I'm looking to prove that if $a_{ij} geq 0$ then
$$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.
For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.
I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
$$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
I'm looking to prove that if $a_{ij} geq 0$ then
$$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.
For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.
I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
$$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
I'm looking to prove that if $a_{ij} geq 0$ then
$$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.
For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.
I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
$$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.
real-analysis sequences-and-series
$endgroup$
I'm looking to prove that if $a_{ij} geq 0$ then
$$ sum_{i=1}^infty sum_{j=1}^infty a_{ij} = sum_{j=1}^infty sum_{i=1}^infty a_{ij}$$.
For my proof I let $S= sum_{j=1}^infty sum_{i=1}^infty a_{ij}$ and I establish the inequality $sum_{i=1}^infty sum_{j=1}^infty a_{ij} leq S$.
I'm trying to prove the reverse inequality in the case that $S$ is infinite. i.e.,
$$ S leq sum_{i=1}^infty sum_{j=1}^infty a_{ij}$$
which means that the double sum $sum_{i=1}^infty sum_{j=1}^infty a_{ij}$ is also infinite. Any ideas how to show this? I'm stumped.
real-analysis sequences-and-series
real-analysis sequences-and-series
asked Jan 23 at 21:40
RdrrRdrr
208111
208111
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.
$endgroup$
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
add a comment |
$begingroup$
Note that since $a_{ij} geqslant 0$,
$$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$
where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.
(The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).
Thus,
$$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$
$endgroup$
add a comment |
$begingroup$
Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085118%2finterchanging-sums%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.
$endgroup$
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
add a comment |
$begingroup$
Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.
$endgroup$
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
add a comment |
$begingroup$
Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.
$endgroup$
Let $b_{ij}:=a_{ji}$ and apply your first result to $b_{ij}$. Then you get the reverse result.
answered Jan 23 at 21:43
NotoriousJuanGNotoriousJuanG
843
843
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
add a comment |
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
How? Applying the first inequality to $b_{ij}$ gives $sum_{i=1}^infty sum_{j=1}^infty b_{ij} leq sum_{j=1}^infty sum_{i=1}^infty b_{ij}$, but then this means $sum_{i=1}^infty sum_{j=1}^infty a_{ji} leq sum_{j=1}^infty sum_{i=1}^infty a_{ji}$ which is not what I want. Swapping the order of the indices doesn't swap the order of the sums.
$endgroup$
– Rdrr
Jan 23 at 21:47
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
Related:math.stackexchange.com/questions/3079002/…
$endgroup$
– Peter Szilas
Jan 23 at 22:09
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
That doesn't appear to answer my specific question. Basicall I want to show if the RHS sum diverges to infinity, then so does LHS. The hypothesis include the convergence of the sums.
$endgroup$
– Rdrr
Jan 23 at 23:11
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
$begingroup$
Note that $sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ji}=sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ij}$ and $sum_{j=1}^{infty}sum_{i=1}^{infty}a_{ji}=sum_{i=1}^{infty}sum_{j=1}^{infty}a_{ij}$ by swapping the names of the indices i and j. This leads to the conclusion you want.
$endgroup$
– NotoriousJuanG
Jan 24 at 0:42
add a comment |
$begingroup$
Note that since $a_{ij} geqslant 0$,
$$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$
where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.
(The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).
Thus,
$$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$
$endgroup$
add a comment |
$begingroup$
Note that since $a_{ij} geqslant 0$,
$$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$
where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.
(The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).
Thus,
$$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$
$endgroup$
add a comment |
$begingroup$
Note that since $a_{ij} geqslant 0$,
$$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$
where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.
(The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).
Thus,
$$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$
$endgroup$
Note that since $a_{ij} geqslant 0$,
$$S' = sum_{i=1}^infty sum_{j=1}^infty a_{ij} geqslant sum_{i=1}^infty sum_{j=1}^N a_{ij} = sum_{j=1}^N sum_{i=1}^infty a_{ij}, $$
where the last equality follows because $sum_{j=1}^N lim_{M to infty} S_M = lim_{M to infty} sum_{j=1}^N S_M$.
(The limit of a finite sum of sequences equals the sum of the individual limits, and this is true if we have extended nonnegative real-valued limits).
Thus,
$$S' geqslant limsup_{N to infty} sum_{j=1}^N sum_{i=1}^infty a_{ij} = S=+infty$$
edited Jan 23 at 23:23
answered Jan 23 at 23:17
RRLRRL
52.6k42573
52.6k42573
add a comment |
add a comment |
$begingroup$
Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.
$endgroup$
add a comment |
$begingroup$
Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.
$endgroup$
add a comment |
$begingroup$
Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.
$endgroup$
Do not bother about convergence at all. We have $ sumlimits_{i=1}^{N} sumlimits_{j=1}^{M} a_{ij} =sumlimits_{j=1}^{M} sumlimits_{i=1}^{N} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. Let $M to infty$ and then $N to infty $ to get $sumlimits_{i=1}^{infty} sumlimits_{j=1}^{infty} a_{ij} leq sumlimits_{j=1}^{infty} sumlimits_{i=1}^{infty} a_{ij}$. By symmtery the reverse inequality also holds.
answered Jan 23 at 23:23


Kavi Rama MurthyKavi Rama Murthy
67.5k53067
67.5k53067
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085118%2finterchanging-sums%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown