Is there always exactly one solution to $a cosleft(frac{x}{2}right)- b sinleft(frac{x}{2}right) = 0$ in the...
$begingroup$
I have a probably simple question.
If I have an equation like
begin{align}
a cos left(frac{x}{2}right) - b sin left(frac{x}{2}right) &= 0\
frac ab cos left(frac{x}{2}right) - sin left(frac{x}{2}right) &= 0
end{align}
with $a, b > 0$. Is it true that there is always precisely one solution in the interval $0 leq x leq 2 pi$.
I think it is obvious, but can I use this in a proof without proving it?
trigonometry
$endgroup$
add a comment |
$begingroup$
I have a probably simple question.
If I have an equation like
begin{align}
a cos left(frac{x}{2}right) - b sin left(frac{x}{2}right) &= 0\
frac ab cos left(frac{x}{2}right) - sin left(frac{x}{2}right) &= 0
end{align}
with $a, b > 0$. Is it true that there is always precisely one solution in the interval $0 leq x leq 2 pi$.
I think it is obvious, but can I use this in a proof without proving it?
trigonometry
$endgroup$
1
$begingroup$
Never assume something is obvious if you cannot state why it is obvious.
$endgroup$
– Wesley Strik
Jan 19 at 15:19
add a comment |
$begingroup$
I have a probably simple question.
If I have an equation like
begin{align}
a cos left(frac{x}{2}right) - b sin left(frac{x}{2}right) &= 0\
frac ab cos left(frac{x}{2}right) - sin left(frac{x}{2}right) &= 0
end{align}
with $a, b > 0$. Is it true that there is always precisely one solution in the interval $0 leq x leq 2 pi$.
I think it is obvious, but can I use this in a proof without proving it?
trigonometry
$endgroup$
I have a probably simple question.
If I have an equation like
begin{align}
a cos left(frac{x}{2}right) - b sin left(frac{x}{2}right) &= 0\
frac ab cos left(frac{x}{2}right) - sin left(frac{x}{2}right) &= 0
end{align}
with $a, b > 0$. Is it true that there is always precisely one solution in the interval $0 leq x leq 2 pi$.
I think it is obvious, but can I use this in a proof without proving it?
trigonometry
trigonometry
edited Jan 19 at 16:13


Wesley Strik
2,113423
2,113423
asked Jan 19 at 14:58
garax91garax91
405
405
1
$begingroup$
Never assume something is obvious if you cannot state why it is obvious.
$endgroup$
– Wesley Strik
Jan 19 at 15:19
add a comment |
1
$begingroup$
Never assume something is obvious if you cannot state why it is obvious.
$endgroup$
– Wesley Strik
Jan 19 at 15:19
1
1
$begingroup$
Never assume something is obvious if you cannot state why it is obvious.
$endgroup$
– Wesley Strik
Jan 19 at 15:19
$begingroup$
Never assume something is obvious if you cannot state why it is obvious.
$endgroup$
– Wesley Strik
Jan 19 at 15:19
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is $$tan(frac{x}{2})=frac{a}{b}$$
$endgroup$
add a comment |
$begingroup$
Simply note the definition of tangent: $tan(x) = dfrac{sin(x)}{cos(x)}$.
$$acosleft(frac{x}{2}right)-bsinleft(frac{x}{2}right) = 0 iff acosleft(frac{x}{2}right) = bsinleft(frac{x}{2}right) iff \ frac{a}{b} = frac{sinleft(frac{x}{2}right)}{cosleft(frac{x}{2}right)} iff frac{a}{b} = tanleft(frac{x}{2}right)$$
Since the range of $tan(x)$ includes all real numbers, there is a solution in the interval $x in [0, 2pi]$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079433%2fis-there-always-exactly-one-solution-to-a-cos-left-fracx2-right-b-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is $$tan(frac{x}{2})=frac{a}{b}$$
$endgroup$
add a comment |
$begingroup$
It is $$tan(frac{x}{2})=frac{a}{b}$$
$endgroup$
add a comment |
$begingroup$
It is $$tan(frac{x}{2})=frac{a}{b}$$
$endgroup$
It is $$tan(frac{x}{2})=frac{a}{b}$$
answered Jan 19 at 15:00


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
76.7k42866
76.7k42866
add a comment |
add a comment |
$begingroup$
Simply note the definition of tangent: $tan(x) = dfrac{sin(x)}{cos(x)}$.
$$acosleft(frac{x}{2}right)-bsinleft(frac{x}{2}right) = 0 iff acosleft(frac{x}{2}right) = bsinleft(frac{x}{2}right) iff \ frac{a}{b} = frac{sinleft(frac{x}{2}right)}{cosleft(frac{x}{2}right)} iff frac{a}{b} = tanleft(frac{x}{2}right)$$
Since the range of $tan(x)$ includes all real numbers, there is a solution in the interval $x in [0, 2pi]$.
$endgroup$
add a comment |
$begingroup$
Simply note the definition of tangent: $tan(x) = dfrac{sin(x)}{cos(x)}$.
$$acosleft(frac{x}{2}right)-bsinleft(frac{x}{2}right) = 0 iff acosleft(frac{x}{2}right) = bsinleft(frac{x}{2}right) iff \ frac{a}{b} = frac{sinleft(frac{x}{2}right)}{cosleft(frac{x}{2}right)} iff frac{a}{b} = tanleft(frac{x}{2}right)$$
Since the range of $tan(x)$ includes all real numbers, there is a solution in the interval $x in [0, 2pi]$.
$endgroup$
add a comment |
$begingroup$
Simply note the definition of tangent: $tan(x) = dfrac{sin(x)}{cos(x)}$.
$$acosleft(frac{x}{2}right)-bsinleft(frac{x}{2}right) = 0 iff acosleft(frac{x}{2}right) = bsinleft(frac{x}{2}right) iff \ frac{a}{b} = frac{sinleft(frac{x}{2}right)}{cosleft(frac{x}{2}right)} iff frac{a}{b} = tanleft(frac{x}{2}right)$$
Since the range of $tan(x)$ includes all real numbers, there is a solution in the interval $x in [0, 2pi]$.
$endgroup$
Simply note the definition of tangent: $tan(x) = dfrac{sin(x)}{cos(x)}$.
$$acosleft(frac{x}{2}right)-bsinleft(frac{x}{2}right) = 0 iff acosleft(frac{x}{2}right) = bsinleft(frac{x}{2}right) iff \ frac{a}{b} = frac{sinleft(frac{x}{2}right)}{cosleft(frac{x}{2}right)} iff frac{a}{b} = tanleft(frac{x}{2}right)$$
Since the range of $tan(x)$ includes all real numbers, there is a solution in the interval $x in [0, 2pi]$.
answered Jan 19 at 15:15
KM101KM101
6,0351525
6,0351525
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079433%2fis-there-always-exactly-one-solution-to-a-cos-left-fracx2-right-b-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Never assume something is obvious if you cannot state why it is obvious.
$endgroup$
– Wesley Strik
Jan 19 at 15:19