Lemma about quasi-coherent modules
$begingroup$
I am trying to understand quasi-coherent modules from https://stacks.math.columbia.edu/tag/01BD . Let me state partially the lemma 17.10.5 about the construction of an example of quasi-coherent module.
Let $(X,mathcal{O}_X)$ be ringed space. Let $α:R→Γ(X,mathcal{O}_X)$ be a ring homomorphism from a ring $R$ into the ring of global sections on $X$. Let $M$ be an $R$-module. Choose a presentation $⨁_{j∈J}R→⨁_{i∈I}R→M→0$.
Set $mathcal{F}_2=Coker(⨁_{j∈J}mathcal{O}_X→⨁_{i∈I}mathcal{O}_X)$.
Here the map on the component $mathcal{O}_X$ corresponding to $j∈J$ given by the section $∑_{i}α(r_{ij})$ where the $r_{ij}$ are the matrix coefficients of the map in the presentation of $M$.
It is not clear to me how this map is being defined and especially what is meant by the map of representation.
Thanks in advance!
algebraic-geometry quasicoherent-sheaves
$endgroup$
add a comment |
$begingroup$
I am trying to understand quasi-coherent modules from https://stacks.math.columbia.edu/tag/01BD . Let me state partially the lemma 17.10.5 about the construction of an example of quasi-coherent module.
Let $(X,mathcal{O}_X)$ be ringed space. Let $α:R→Γ(X,mathcal{O}_X)$ be a ring homomorphism from a ring $R$ into the ring of global sections on $X$. Let $M$ be an $R$-module. Choose a presentation $⨁_{j∈J}R→⨁_{i∈I}R→M→0$.
Set $mathcal{F}_2=Coker(⨁_{j∈J}mathcal{O}_X→⨁_{i∈I}mathcal{O}_X)$.
Here the map on the component $mathcal{O}_X$ corresponding to $j∈J$ given by the section $∑_{i}α(r_{ij})$ where the $r_{ij}$ are the matrix coefficients of the map in the presentation of $M$.
It is not clear to me how this map is being defined and especially what is meant by the map of representation.
Thanks in advance!
algebraic-geometry quasicoherent-sheaves
$endgroup$
add a comment |
$begingroup$
I am trying to understand quasi-coherent modules from https://stacks.math.columbia.edu/tag/01BD . Let me state partially the lemma 17.10.5 about the construction of an example of quasi-coherent module.
Let $(X,mathcal{O}_X)$ be ringed space. Let $α:R→Γ(X,mathcal{O}_X)$ be a ring homomorphism from a ring $R$ into the ring of global sections on $X$. Let $M$ be an $R$-module. Choose a presentation $⨁_{j∈J}R→⨁_{i∈I}R→M→0$.
Set $mathcal{F}_2=Coker(⨁_{j∈J}mathcal{O}_X→⨁_{i∈I}mathcal{O}_X)$.
Here the map on the component $mathcal{O}_X$ corresponding to $j∈J$ given by the section $∑_{i}α(r_{ij})$ where the $r_{ij}$ are the matrix coefficients of the map in the presentation of $M$.
It is not clear to me how this map is being defined and especially what is meant by the map of representation.
Thanks in advance!
algebraic-geometry quasicoherent-sheaves
$endgroup$
I am trying to understand quasi-coherent modules from https://stacks.math.columbia.edu/tag/01BD . Let me state partially the lemma 17.10.5 about the construction of an example of quasi-coherent module.
Let $(X,mathcal{O}_X)$ be ringed space. Let $α:R→Γ(X,mathcal{O}_X)$ be a ring homomorphism from a ring $R$ into the ring of global sections on $X$. Let $M$ be an $R$-module. Choose a presentation $⨁_{j∈J}R→⨁_{i∈I}R→M→0$.
Set $mathcal{F}_2=Coker(⨁_{j∈J}mathcal{O}_X→⨁_{i∈I}mathcal{O}_X)$.
Here the map on the component $mathcal{O}_X$ corresponding to $j∈J$ given by the section $∑_{i}α(r_{ij})$ where the $r_{ij}$ are the matrix coefficients of the map in the presentation of $M$.
It is not clear to me how this map is being defined and especially what is meant by the map of representation.
Thanks in advance!
algebraic-geometry quasicoherent-sheaves
algebraic-geometry quasicoherent-sheaves
asked Jan 19 at 15:58


solgaleosolgaleo
6911
6911
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The map $R^{(J)}to R^{(I)}$ admits a matrix representation $(r_{ij})$ as $R^{(J)}$ and $R^{(I)}$ are free modules. As $I$ and $J$ may not be finite, what we mean by a matrix here is a map $r:Itimes Jto R$, $r(i,j)=r_{ij}$. The map $mathcal{O}_X^{(J)}tomathcal{O}_X^{(I)}$ is given 'component wise' on the copies of the $mathcal{O}_X$'s by $x_jmapstosum_ialpha(r_{ij})$, where $x_jinmathcal{O}_X^{(j)}subsetmathcal{O}_X^{(J)}$. Edit: the $x_j$ is determined by $R^{(J)}=Gamma(X,mathcal{O}_X^{(J)})$. We take the image of the map under the global sections functor.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079495%2flemma-about-quasi-coherent-modules%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The map $R^{(J)}to R^{(I)}$ admits a matrix representation $(r_{ij})$ as $R^{(J)}$ and $R^{(I)}$ are free modules. As $I$ and $J$ may not be finite, what we mean by a matrix here is a map $r:Itimes Jto R$, $r(i,j)=r_{ij}$. The map $mathcal{O}_X^{(J)}tomathcal{O}_X^{(I)}$ is given 'component wise' on the copies of the $mathcal{O}_X$'s by $x_jmapstosum_ialpha(r_{ij})$, where $x_jinmathcal{O}_X^{(j)}subsetmathcal{O}_X^{(J)}$. Edit: the $x_j$ is determined by $R^{(J)}=Gamma(X,mathcal{O}_X^{(J)})$. We take the image of the map under the global sections functor.
$endgroup$
add a comment |
$begingroup$
The map $R^{(J)}to R^{(I)}$ admits a matrix representation $(r_{ij})$ as $R^{(J)}$ and $R^{(I)}$ are free modules. As $I$ and $J$ may not be finite, what we mean by a matrix here is a map $r:Itimes Jto R$, $r(i,j)=r_{ij}$. The map $mathcal{O}_X^{(J)}tomathcal{O}_X^{(I)}$ is given 'component wise' on the copies of the $mathcal{O}_X$'s by $x_jmapstosum_ialpha(r_{ij})$, where $x_jinmathcal{O}_X^{(j)}subsetmathcal{O}_X^{(J)}$. Edit: the $x_j$ is determined by $R^{(J)}=Gamma(X,mathcal{O}_X^{(J)})$. We take the image of the map under the global sections functor.
$endgroup$
add a comment |
$begingroup$
The map $R^{(J)}to R^{(I)}$ admits a matrix representation $(r_{ij})$ as $R^{(J)}$ and $R^{(I)}$ are free modules. As $I$ and $J$ may not be finite, what we mean by a matrix here is a map $r:Itimes Jto R$, $r(i,j)=r_{ij}$. The map $mathcal{O}_X^{(J)}tomathcal{O}_X^{(I)}$ is given 'component wise' on the copies of the $mathcal{O}_X$'s by $x_jmapstosum_ialpha(r_{ij})$, where $x_jinmathcal{O}_X^{(j)}subsetmathcal{O}_X^{(J)}$. Edit: the $x_j$ is determined by $R^{(J)}=Gamma(X,mathcal{O}_X^{(J)})$. We take the image of the map under the global sections functor.
$endgroup$
The map $R^{(J)}to R^{(I)}$ admits a matrix representation $(r_{ij})$ as $R^{(J)}$ and $R^{(I)}$ are free modules. As $I$ and $J$ may not be finite, what we mean by a matrix here is a map $r:Itimes Jto R$, $r(i,j)=r_{ij}$. The map $mathcal{O}_X^{(J)}tomathcal{O}_X^{(I)}$ is given 'component wise' on the copies of the $mathcal{O}_X$'s by $x_jmapstosum_ialpha(r_{ij})$, where $x_jinmathcal{O}_X^{(j)}subsetmathcal{O}_X^{(J)}$. Edit: the $x_j$ is determined by $R^{(J)}=Gamma(X,mathcal{O}_X^{(J)})$. We take the image of the map under the global sections functor.
edited Jan 20 at 21:31
answered Jan 20 at 21:18
Ryan KeletiRyan Keleti
1719
1719
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079495%2flemma-about-quasi-coherent-modules%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown