Linking Algebra and Number Theory
$begingroup$
a,b,c is an real number. Now, let's say that p(x)=ax^2+bx+c. Then,
find an equivalent condition that always has an integer value(the p(x)'s value) for an arbitrary integer x.
Sorry guys I don't know MathJax.
Anyway, this problem is represented in Hungary Eotvos 1902.
number-theory contest-math
$endgroup$
add a comment |
$begingroup$
a,b,c is an real number. Now, let's say that p(x)=ax^2+bx+c. Then,
find an equivalent condition that always has an integer value(the p(x)'s value) for an arbitrary integer x.
Sorry guys I don't know MathJax.
Anyway, this problem is represented in Hungary Eotvos 1902.
number-theory contest-math
$endgroup$
add a comment |
$begingroup$
a,b,c is an real number. Now, let's say that p(x)=ax^2+bx+c. Then,
find an equivalent condition that always has an integer value(the p(x)'s value) for an arbitrary integer x.
Sorry guys I don't know MathJax.
Anyway, this problem is represented in Hungary Eotvos 1902.
number-theory contest-math
$endgroup$
a,b,c is an real number. Now, let's say that p(x)=ax^2+bx+c. Then,
find an equivalent condition that always has an integer value(the p(x)'s value) for an arbitrary integer x.
Sorry guys I don't know MathJax.
Anyway, this problem is represented in Hungary Eotvos 1902.
number-theory contest-math
number-theory contest-math
asked Jan 19 at 8:40


mathheromathhero
235
235
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If you put $x = -1, 0, 1$, then you get $cin mathbb{Z}$, $a+b, a-bin mathbb{Z}$, which implies $a = frac{m}{2}, b = frac{n}{2}$ for some $m, nin mathbb{Z}$ with $mequiv n(mathrm{mod},2)$. Now try to show the converse - if $a, b, c$ are of this form, then $f(x)in mathbb{Z}$ for any $xin mathbb{Z}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079117%2flinking-algebra-and-number-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you put $x = -1, 0, 1$, then you get $cin mathbb{Z}$, $a+b, a-bin mathbb{Z}$, which implies $a = frac{m}{2}, b = frac{n}{2}$ for some $m, nin mathbb{Z}$ with $mequiv n(mathrm{mod},2)$. Now try to show the converse - if $a, b, c$ are of this form, then $f(x)in mathbb{Z}$ for any $xin mathbb{Z}$.
$endgroup$
add a comment |
$begingroup$
If you put $x = -1, 0, 1$, then you get $cin mathbb{Z}$, $a+b, a-bin mathbb{Z}$, which implies $a = frac{m}{2}, b = frac{n}{2}$ for some $m, nin mathbb{Z}$ with $mequiv n(mathrm{mod},2)$. Now try to show the converse - if $a, b, c$ are of this form, then $f(x)in mathbb{Z}$ for any $xin mathbb{Z}$.
$endgroup$
add a comment |
$begingroup$
If you put $x = -1, 0, 1$, then you get $cin mathbb{Z}$, $a+b, a-bin mathbb{Z}$, which implies $a = frac{m}{2}, b = frac{n}{2}$ for some $m, nin mathbb{Z}$ with $mequiv n(mathrm{mod},2)$. Now try to show the converse - if $a, b, c$ are of this form, then $f(x)in mathbb{Z}$ for any $xin mathbb{Z}$.
$endgroup$
If you put $x = -1, 0, 1$, then you get $cin mathbb{Z}$, $a+b, a-bin mathbb{Z}$, which implies $a = frac{m}{2}, b = frac{n}{2}$ for some $m, nin mathbb{Z}$ with $mequiv n(mathrm{mod},2)$. Now try to show the converse - if $a, b, c$ are of this form, then $f(x)in mathbb{Z}$ for any $xin mathbb{Z}$.
answered Jan 19 at 8:46


Seewoo LeeSeewoo Lee
6,959927
6,959927
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079117%2flinking-algebra-and-number-theory%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown