Riemann Integral of discontinuous function
$begingroup$
So I know you can integrate some discontinuous functions when the function is discontinuous at a finite number of points. So you can integrate for example this function on a interval [-1,3]:
$$ f(x):=begin{cases}
x & x< frac{1}{4} \
frac{1}{x} & xgeq frac{1}{4}
end{cases}
$$
But can you integrate this function on a interval the discontinuous point as an end point? Like [-1,1/4]?
integration riemann-integration discontinuous-functions
$endgroup$
add a comment |
$begingroup$
So I know you can integrate some discontinuous functions when the function is discontinuous at a finite number of points. So you can integrate for example this function on a interval [-1,3]:
$$ f(x):=begin{cases}
x & x< frac{1}{4} \
frac{1}{x} & xgeq frac{1}{4}
end{cases}
$$
But can you integrate this function on a interval the discontinuous point as an end point? Like [-1,1/4]?
integration riemann-integration discontinuous-functions
$endgroup$
$begingroup$
but this function $f$ is continuous?
$endgroup$
– BigbearZzz
Jan 19 at 11:22
$begingroup$
my mistake, got the wrong function
$endgroup$
– Dries De Witte
Jan 19 at 11:24
1
$begingroup$
It is right-continuous, hence integrable, if you redefine at 1/4
$endgroup$
– Tito Eliatron
Jan 19 at 11:36
add a comment |
$begingroup$
So I know you can integrate some discontinuous functions when the function is discontinuous at a finite number of points. So you can integrate for example this function on a interval [-1,3]:
$$ f(x):=begin{cases}
x & x< frac{1}{4} \
frac{1}{x} & xgeq frac{1}{4}
end{cases}
$$
But can you integrate this function on a interval the discontinuous point as an end point? Like [-1,1/4]?
integration riemann-integration discontinuous-functions
$endgroup$
So I know you can integrate some discontinuous functions when the function is discontinuous at a finite number of points. So you can integrate for example this function on a interval [-1,3]:
$$ f(x):=begin{cases}
x & x< frac{1}{4} \
frac{1}{x} & xgeq frac{1}{4}
end{cases}
$$
But can you integrate this function on a interval the discontinuous point as an end point? Like [-1,1/4]?
integration riemann-integration discontinuous-functions
integration riemann-integration discontinuous-functions
edited Jan 19 at 11:27
Dries De Witte
asked Jan 19 at 11:17
Dries De WitteDries De Witte
103
103
$begingroup$
but this function $f$ is continuous?
$endgroup$
– BigbearZzz
Jan 19 at 11:22
$begingroup$
my mistake, got the wrong function
$endgroup$
– Dries De Witte
Jan 19 at 11:24
1
$begingroup$
It is right-continuous, hence integrable, if you redefine at 1/4
$endgroup$
– Tito Eliatron
Jan 19 at 11:36
add a comment |
$begingroup$
but this function $f$ is continuous?
$endgroup$
– BigbearZzz
Jan 19 at 11:22
$begingroup$
my mistake, got the wrong function
$endgroup$
– Dries De Witte
Jan 19 at 11:24
1
$begingroup$
It is right-continuous, hence integrable, if you redefine at 1/4
$endgroup$
– Tito Eliatron
Jan 19 at 11:36
$begingroup$
but this function $f$ is continuous?
$endgroup$
– BigbearZzz
Jan 19 at 11:22
$begingroup$
but this function $f$ is continuous?
$endgroup$
– BigbearZzz
Jan 19 at 11:22
$begingroup$
my mistake, got the wrong function
$endgroup$
– Dries De Witte
Jan 19 at 11:24
$begingroup$
my mistake, got the wrong function
$endgroup$
– Dries De Witte
Jan 19 at 11:24
1
1
$begingroup$
It is right-continuous, hence integrable, if you redefine at 1/4
$endgroup$
– Tito Eliatron
Jan 19 at 11:36
$begingroup$
It is right-continuous, hence integrable, if you redefine at 1/4
$endgroup$
– Tito Eliatron
Jan 19 at 11:36
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079243%2friemann-integral-of-discontinuous-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3079243%2friemann-integral-of-discontinuous-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
but this function $f$ is continuous?
$endgroup$
– BigbearZzz
Jan 19 at 11:22
$begingroup$
my mistake, got the wrong function
$endgroup$
– Dries De Witte
Jan 19 at 11:24
1
$begingroup$
It is right-continuous, hence integrable, if you redefine at 1/4
$endgroup$
– Tito Eliatron
Jan 19 at 11:36